Меню
Бесплатно
Главная  /  Диагностика  /  Исследовать характер точек разрыва. Точки разрыва функции – определения, классификация и примеры

Исследовать характер точек разрыва. Точки разрыва функции – определения, классификация и примеры

Если функция f (x ) не является непрерывной в точке x = a , то говорят, что f (x ) имеетразрыв в этой точке. На рисунке 1 схематически изображены графики четырех функций, две из которых непрерывны при x = a , а две имеют разрыв.

Непрерывна при x = a .

Имеет разрыв при x = a .

Непрерывна при x = a .

Имеет разрыв при x = a .

Рисунок 1.

Классификация точек разрыва функции

Все точки разрыва функции разделяются наточки разрыва первого и второго рода .

Говорят, что функция f (x ) имеетточку разрыва первого рода при x = a , если в это точке

При этом возможно следующие два случая:

Функция f (x ) имеетточку разрыва второго рода при x = a , если по крайней мере один из односторонних пределов не существует или равен бесконечности.

Пример3 .13 Рассмотрим функцию(функция Хевисайда ) на отрезке,. Тогданепрерывна на отрезке(несмотря на то, что в точкеона имеет разрыв первого рода).


Рис.3 .15 .График функции Хевисайда

Аналогичное определение можно дать и для полуинтервалов видаи, включая случаии. Однако можно обобщить данное определение на случай произвольного подмножестваследующим образом. Введём сначала понятиеиндуцированной набазы: пусть -- база, все окончаниякоторой имеют непустые пересечения с. Обозначимчерези рассмотрим множество всех. Нетрудно тогда проверить, что множествобудет базой. Тем самым дляопределены базы,и, где,и -- базы непроколотых двусторонних (соответственно левых, правых) окрестностей точки(их определение см. в начале текущей главы).

Свойства функций, непрерывных на отрезке.

Свойство 1: (Первая теорема Вейерштрасса (Вейерштрасс Карл (1815-1897)- немецкий математик)). Функция, непрерывная на отрезке, ограничена на этом отрезке, т.е. на отрезке [ a , b ] выполняется условие - M £ f (x ) £ M .

Доказательство этого свойства основано на том, что функция, непрерывная в точке х 0 , ограничена в некоторой ее окрестности, а если разбивать отрезок [ a , b ] на бесконечное количество отрезков, которые “стягиваются” к точке х 0 , то образуется некоторая окрестность точки х 0 .

Свойство 2: Функция, непрерывная на отрезке [ a , b ], принимает на нем наибольшее и наименьшее значения.

Т.е. существуют такие значения х 1 и х 2 , что f (x 1 ) = m , f (x 2 ) = M , причем

m £ f (x ) £ M

Отметим эти наибольшие и наименьшие значения функция может принимать на отрезке и несколько раз (например - f (x ) = sinx ).

Разность между наибольшим и наименьшим значением функции на отрезке называетсяколебанием функции на отрезке.

Свойство 3: (Вторая теорема Больцано - Коши). Функция, непрерывная на отрезке [ a , b ], принимает на этом отрезке все значения между двумя произвольными величинами.

Свойство 4: Если функция f (x ) непрерывна в точке х = х 0 , то существует некоторая окрестность точки х 0 , в которой функция сохраняет знак.

Свойство 5: (Первая теорема Больцано (1781-1848) - Коши). Если функция f (x )- непрерывная на отрезке [ a , b ] и имеет на концах отрезка значения противоположных знаков, то существует такая точка внутри этого отрезка, где f (x ) = 0.

Т . е . если sign(f(a)) ¹ sign(f(b)), то $ х 0 : f(x 0) = 0.

Определение. Функция f (x ) называетсяравномерно непрерывной на отрезке [ a , b ], если для любого e >0 существует D >0 такое, что для любых точек х 1 Î [ a , b ] и x 2 Î [ a , b ] таких, что

ï х 2 - х 1 ï < D

верно неравенство ï f (x 2 ) - f (x 1 ) ï < e

Отличие равномерной непрерывности от “обычной” в том, что для любого e существует свое D , не зависящее от х, а при “обычной” непрерывности D зависит от e и х.

Свойство 6: Теорема Кантора (Кантор Георг (1845-1918)- немецкий математик). Функция, непрерывная на отрезке, равномерно непрерывна на нем.

(Это свойство справедливо только для отрезков, а не для интервалов и полуинтервалов.)

Пример .

Все точки разрыва функции разделяются на точки разрыва первого и второго рода .

Говорят, что функция f (x ) имеет точку разрыва первого рода при x = a , если в это точке

При этом возможно следующие два случая:

  • Левосторонний предел и правосторонний предел равны друг другу:

Такая точка называется точкой устранимого разрыва .

  • Левосторонний предел и правосторонний предел не равны друг другу:

Такая точка называется точкой конечного разрыва . Модуль разности значений односторонних пределов называется скачком функции .

Функция f (x ) имеет точку разрыва второго рода при x = a , если по крайней мере один из односторонних пределов не существует или равен бесконечности.

Пример 1

Исследовать функцию на непрерывность.


Решение.

Данная функция не определена в точках x = − 1 и x = 1. Следовательно, функция имеет разрывы в точкахx = ± 1. Чтобы определить тип разрыва, вычислим односторонние пределы в этих точках.

Поскольку левосторонний предел при x = − 1 равен бесконечности, то данная точка является точкой разрыва второго рода.

Аналогично, левосторонний предел в точке x = 1 равен бесконечности. Эта точка также является точкой разрыва второго рода.

Пример 2

Показать, что функция имеет устранимый разрыв в точке x = 0.


Решение.

Очевидно, данная функция не определена при x = 0. Поскольку sin x является непрерывной функцией для всехx , то искомая функция также непрерывна при всех x за исключением точки x = 0.
Так как , то в данной точке существует устранимый разрыв. Мы можем сконструировать новую функцию

которая будет непрерывной при любом действительном x .

Пример 3

Найти точки разрыва функции , если они существуют.


Решение.

Данная функция существует при всех значениях x , однако она состоит из двух различных функций и, поэтому, не является элементарной. Исследуем "поведение" этой функции вблизи точки x = 0, где ее аналитическое выражение изменяется.



Вычислим односторонние пределеы при x = 0.

Следовательно, функция имеет точку разрыва первого рода при x = 0. Скачок функции в этой точке равен

При всех других значениях x функция является непрерывной, поскольку обе составляющие функции слева и справа от точки x = 0 представляют собой элементарные функции без точек разрыва.

Пример 4

Найти точки разрыва функции , если они существуют.


Решение.

Данная элементарная функция определена для всех x , исключая точку x = 0, где она имеет разрыв. Найдем односторонние пределы в этой точке.

Видно, что в точке x = 0 существует разрыв первого рода (рисунок 2).

Рис.2 Рис.3

Пример 5

Найти точки разрыва функции , если таковые существуют.


Решение.

Функция определена и непрерывна при всех x , за исключением точки , где существует разрыв. Исследуем точку разрыва.

Так как значения односторонних пределов конечны, то, следовательно, в точке существует разрыв первого рода. График функции схематически показан на рисунке 3.

Свойство 1: (Первая теорема Вейерштрасса (Вейерштрасс Карл (1815-1897) - немецкий математик)). Функция, непрерывная на отрезке, ограничена на этом отрезке, т.е. на отрезке выполняется условие - .

Доказательство этого свойства основано на том, что функция, непрерывная в точке , ограничена в некоторой ее окрестности, а если разбивать отрезок на бесконечное количество отрезков, которые “стягиваются” к точке , то образуется некоторая окрестность точки .

Свойство 2: Функция, непрерывная на отрезке , принимает на нем наибольшее и наименьшее значения.

Т.е. существуют такие значения и , что , причем .

Отметим эти наибольшие и наименьшие значения функция может принимать на отрезке и несколько раз (например - ).

Разность между наибольшим и наименьшим значением функции на отрезке называется колебанием функции на отрезке.

Свойство 3: (Вторая теорема Больцано - Коши). Функция, непрерывная на отрезке , принимает на этом отрезке все значения между двумя произвольными величинами.

Свойство 4: Если функция непрерывна в точке , то существует некоторая окрестность точки , в которой функция сохраняет знак.

Свойство 5: (Первая теорема Больцано (1781-1848) - Коши). Если функция - непрерывная на отрезке и имеет на концах отрезка значения противоположных знаков, то существует такая точка внутри этого отрезка, где .

Т.е. если , то .

Определение. Функция называется равномерно непрерывной на отрезке , если для любого существует такое, что для любых точек и таких, что верно неравенство .

Пример. Исследовать на непрерывность функцию и определить тип точек разрыва, если они есть. в точке функция непрерывна в точке

точка разрыва 1 - го рода

Устранимый разрыв.

Определение . Точка a называется точкой устранимого разрыва функции y=f(x) , если предел функции f(x) в этой точке существует, но в точке a функция f(x) либо не определена, либо имеет частное значение f(a) , отличное от предела f(x) в этой точке.

Пример . Например, функция

имеет в точке x=0 устранимый разрыв. Действительно, предельное значение этой функции в точке х=0 равно 1. Частное же значение равно 2.

Если функция f(x) имеет в точке a устранимый разрыв, то этот разрыв можно устранить, не изменяя при этом значений функции в точках, отличных от a . Для этого достаточно положить значение функции в точке a равным ее предельному значению в этой точке. Так, в рассмотренном выше примере достаточно положить f(0)=1 и тогда , т.е. функция f(x) станет непрерывной в точке x=0 .

Разрыв первого рода.

Определение . Точка a называется точкой разрыва, первого рода, если в этой точке функция f(x) имеет конечные, но не равные друг другу правый и левый пределы

Приведем некоторые примеры.

Пример . Функция y=sgn x имеет в точке x=0 разрыв первого рода. Действительно, и, таким образом, эти пределы не равны между собой.

Пример . Функция , определенная всюду, кроме точки x=1 , имеет в точке x=1 разрыв первого рода. В самом деле, .

Разрыв второго рода.

Определение . Точка a называется точкой разрыва второго рода, если в этой точке функция f(x) не имеет по крайней мере одного из односторонних пределов или если хотя бы один из односторонних пределов бесконечен.

Пример . Функция f(x)=tg x , очевидно, имеет разрыв второго рода в каждой из точек x k =π/2+π k , k=0, ± 1, ± 2,… , ибо в каждой такой точке

Пример . Функция имеет разрыв второго рода в точке x=0 , ибо в этой точке у нее не существует ни правого, ни левого пределов.

Непрерывность функции на отрезке

Определение . Функция, определенная на отрезке и непрерывная в каждой его точке, называется непрерывной на этом отрезке.

При этом под непрерывность в точке a понимается непрерывность справа, а под непрерывностью в точке b - непрерывность слева.

Будем говорить, что функция y=f(x) , определенная на множестве {x} достигает на нем своей верхней (нижней) грани , если существует такая точка x 0 ∈{x} , что f(x 0)=β (f(x 0)=α ).

Теорема [Вейерштрасса] . Всякая непрерывная на отрезке функция ограничена и достигает на нем своей верхней грани и своей нижней грани.

Теорема [Больцано-Коши] . Если функция y=f(x) непрерывна на отрезке и f(a)=A , f(b)=B , то для любого C , заключенного между A и B , существует такая точка ξ∈ , что f(ξ)=C .

Другими словами, непрерывная на отрезке функция, принимая какие-либо два значения, принимает и любое лежащее между ними значение.

Следствие . Если функция непрерывна на отрезке и на его концах принимает значения разных знаков, то на этом отрезке существует хотя бы одна точка, в которой функция обращается в нуль.

Следствие . Пусть функция y=f(x) непрерывна на отрезке и , . Тогда функция f(x) принимает все значения из отрезка и только эти значения.

Таким образом, множество всех значений функции, заданной и непрерывной на некотором отрезке, представляет собой также отрезок.

Точка а называется точкой устранимого разрыва функции , если предел функции в этой точке существует, но в точке а функциялибо не определена, либо ее значениене равно пределу в этой точке

    Разрыв первого рода.

Точка а называется точкой разрыва первого рода функции , если в этой точке функция имеет конечные, но не равные друг другу левый и правый пределы.

    Разрыв второго рода.

Точка а называется точкой разрыва второго рода функции Точка а называется точкой устранимого разрыва функции , если в этой точке функция не имеет по крайней мере одного из односторонних пределов или хотя бы один из односторонних пределов бесконечен.

25. Производная: определение, механический и геометрический смысл. Уравне-ние касательной к кривой.

Определение производной

Пусть функция определена на некотором промежутке Х. Придадим значению аргумента в точке произвольное приращение так, чтобы точка также принадлежала Х. Тогда соответствующее приращение функции составит .

Опр . Производной функции в точкеназывается предел отношения приращения функции в этой точке к приращению аргумента при(если этот предел существует).

Если в некоторой точке предел бесконечен, то говорят, что в этой точке функция имеет бесконечную производную. Если функция имеет производную в каждой точке множества Х, то производнаятакже является функцией от аргумента х, определенной на Х.

Геометрический смысл производной

Для выяснения геометрического смысла производной нам понадобится определение касательной к графику функции в данной точке.

Опр. Касательной к графику функции в точке М называется предельное положение секущей МN, когда точка N стремится к точке М по кривой.

Уравнение пучка прямых, проходящих через точку , имеет вид

Угловой коэффициент секущей равен

Тогда угловой коэффициент касательной равен

Отсюда следует наглядный вывод о том, что . В этом и состоитгеометрический смысл производной .

    отсюда, v (t 0) = x’ (t 0) , т.e. скорость – это производная координаты по времени. В этом и состоит механический смысл производной. Аналогично, ускорение – это производная скорости по времени : a = v’ (t ).

Уравнение касательной к графику функции в точке имеет вид:

26. Основные правила дифференцирования. Производные основных элементар-ных функций.

Правила дифференцирования.

1. Производная постоянной равна нулю

2. Производная аргумента равна единице.

3. Производная алгебраической суммы конечного числа дифференцируемых функций равна такой же сумме производных этих функций.

    Производная произведения двух дифференцируемых функций равна произведению производной первого сомножителя на второй плюс произведение первого сомножителя на производную второго.

Следствие 1. Постоянный множитель можно выносить за знак производной.

Следствие 2. Производная произведения нескольких дифференцируемых функций равна сумме произведений производной каждого из сомножителей на все остальные, например

5. Производная частного двух дифференцируемых функций может быть найдена по формуле:

Производные основных элементар-ных функций.

1. (C)” = 0, где C = const

2. (x a)” = ax a-1 , где a не равно 0

3. (a x)” = a x ln a, где a > 0

4. (e x)” = e x

5. (log a x)” =1/x ln a , где a > 0

6. (ln x)” =1/x

7. (sin x)” = cos x

8. (cos x)” = - sin x

9. (tg x)” =1/cos 2 x

10. (ctg x)” = -1/sin 2 x

11. (arcsin x)” = 1/~1-x 2

12. (arccos x)’ = -1/~1-x 2

13. (arctg x)” =1/1+x 2

14. (arcctg x)” = -1/1+x 2

27. Производная сложной функции. Производные высших порядков.

Непрерывность функции. Точки разрыва.

Идет бычок, качается, вздыхает на ходу:
– Ох, доска кончается, сейчас я упаду!

На данном уроке мы разберём понятие непрерывности функции, классификацию точек разрыва и распространённую практическую задачу исследования функции на непрерывность . Из самого названия темы многие интуитивно догадываются, о чём пойдёт речь, и думают, что материал довольно простой. Это правда. Но именно несложные задачи чаще всего наказывают за пренебрежение и поверхностный подход к их решению. Поэтому рекомендую очень внимательно изучить статью и уловить все тонкости и технические приёмы.

Что нужно знать и уметь? Не очень-то и много. Для качественного усвоения урока необходимо понимать, что такое предел функции . Читателям с низким уровнем подготовки достаточно осмыслить статью Пределы функций. Примеры решений и посмотреть геометрический смысл предела в методичке Графики и свойства элементарных функций . Также желательно ознакомиться с геометрическими преобразованиями графиков , поскольку практика в большинстве случаев предполагает построение чертежа. Перспективы оптимистичны для всех, и даже полный чайник сумеет самостоятельно справиться с задачей в ближайший час-другой!

Непрерывность функции. Точки разрыва и их классификация

Понятие непрерывности функции

Рассмотрим некоторую функцию , непрерывную на всей числовой прямой:

Или, говоря лаконичнее, наша функция непрерывна на (множестве действительных чисел).

Каков «обывательский» критерий непрерывности? Очевидно, что график непрерывной функции можно начертить, не отрывая карандаша от бумаги.

При этом следует чётко отличать два простых понятия: область определения функции и непрерывность функции . В общем случае это не одно и то же . Например:

Данная функция определена на всей числовой прямой, то есть для каждого значения «икс» существует своё значение «игрека» . В частности, если , то . Заметьте, что другая точка выколота, ведь по определению функции, значению аргумента должно соответствовать единственное значение функции. Таким образом, область определения нашей функции: .

Однако эта функция не является непрерывной на ! Совершенно очевидно, что в точке она терпит разрыв . Термин тоже вполне вразумителен и нагляден, действительно, карандаш здесь по любому придётся оторвать от бумаги. Немного позже мы рассмотрим классификацию точек разрыва.

Непрерывность функции в точке и на интервале

В той или иной математической задаче речь может идти о непрерывности функции в точке, непрерывности функции на интервале, полуинтервале или непрерывности функции на отрезке. То есть, не существует «просто непрерывности» – функция может быть непрерывной ГДЕ-ТО. И основополагающим «кирпичиком» всего остального является непрерывность функции в точке .

Теория математического анализа даёт определение непрерывности функции в точке с помощью «дельта» и «эпсилон» окрестностей, но на практике в ходу другое определение, которому мы и уделим самое пристальное внимание.

Сначала вспомним односторонние пределы , ворвавшиеся в нашу жизнь на первом уроке о графиках функций . Рассмотрим будничную ситуацию:

Если приближаться по оси к точке слева (красная стрелка), то соответствующие значения «игреков» будут идти по оси к точке (малиновая стрелка). Математически данный факт фиксируется с помощью левостороннего предела :

Обратите внимание на запись (читается «икс стремится к ка слева»). «Добавка» «минус ноль» символизирует , по сути это и обозначает, что мы подходим к числу с левой стороны.

Аналогично, если приближаться к точке «ка» справа (синяя стрелка), то «игреки» придут к тому же значению , но уже по зелёной стрелке, и правосторонний предел оформится следующим образом:

«Добавка» символизирует , и запись читается так: «икс стремится к ка справа».

Если односторонние пределы конечны и равны (как в нашем случае): , то будем говорить, что существует ОБЩИЙ предел . Всё просто, общий предел – это наш «обычный» предел функции , равный конечному числу.

Заметьте, что если функция не определена при (выколите чёрную точку на ветке графика), то перечисленные выкладки остаются справедливыми. Как уже неоднократно отмечалось, в частности, в статье о бесконечно малых функциях , выражения означают, что «икс» бесконечно близко приближается к точке , при этом НЕ ИМЕЕТ ЗНАЧЕНИЯ , определена ли сама функция в данной точке или нет. Хороший пример встретится в следующем параграфе, когда анализу подвергнется функция .

Определение : функция непрерывна в точке , если предел функции в данной точке равен значению функции в этой точке: .

Определение детализируется в следующих условиях:

1) Функция должна быть определена в точке , то есть должно существовать значение .

2) Должен существовать общий предел функции . Как отмечалось выше, это подразумевает существование и равенство односторонних пределов: .

3) Предел функции в данной точке должен быть равен значению функции в этой точке: .

Если нарушено хотя бы одно из трёх условий, то функция теряет свойство непрерывности в точке .

Непрерывность функции на интервале формулируется остроумно и очень просто: функция непрерывна на интервале , если она непрерывна в каждой точке данного интервала.

В частности, многие функции непрерывны на бесконечном интервале , то есть на множестве действительных чисел . Это линейная функция, многочлены, экспонента, синус, косинус и др. И вообще, любая элементарная функция непрерывна на своей области определения , так, например, логарифмическая функция непрерывна на интервале . Надеюсь, к данному моменту вы достаточно хорошо представляете, как выглядят графики основных функций. Более подробную информацию об их непрерывности можно почерпнуть у доброго человека по фамилии Фихтенгольц.

С непрерывностью функции на отрезке и полуинтервалах тоже всё несложно, но об этом уместнее рассказать на уроке о нахождении минимального и максимального значений функции на отрезке , а пока голову забивать не будем.

Классификация точек разрыва

Увлекательная жизнь функций богата всякими особенными точками, и точки разрыва лишь одна из страничек их биографии.

Примечание : на всякий случай остановлюсь на элементарном моменте: точка разрыва – это всегда отдельно взятая точка – не бывает «несколько точек разрыва подряд», то есть, нет такого понятия, как «интервал разрывов».

Данные точки в свою очередь подразделяются на две большие группы: разрывы первого рода и разрывы второго рода . У каждого типа разрыва есть свои характерные особенности, которые мы рассмотрим прямо сейчас:

Точка разрыва первого рода

Если в точке нарушено условие непрерывности и односторонние пределы конечны , то она называется точкой разрыва первого рода .

Начнём с самого оптимистичного случая. По первоначальной задумке урока я хотел рассказать теорию «в общем виде», но чтобы продемонстрировать реальность материала, остановился на варианте с конкретными действующими лицами.

Уныло, как фото молодожёнов на фоне Вечного огня, но нижеследующий кадр общепринят. Изобразим на чертеже график функции :


Данная функция непрерывна на всей числовой прямой, кроме точки . И в самом деле, знаменатель же не может быть равен нулю. Однако в соответствии со смыслом предела – мы можем бесконечно близко приближаться к «нулю» и слева и справа, то есть, односторонние пределы существуют и, очевидно, совпадают:
(Условие №2 непрерывности выполнено).

Но функция не определена в точке , следовательно, нарушено Условие №1 непрерывности, и функция терпит разрыв в данной точке.

Разрыв такого вида (с существующим общим пределом ) называют устранимым разрывом . Почему устранимым? Потому что функцию можно доопределить в точке разрыва:

Странно выглядит? Возможно. Но такая запись функции ничему не противоречит! Теперь разрыв устранён и все счастливы:


Выполним формальную проверку:

2) – общий предел существует;
3)

Таким образом, все три условия выполнены, и функция непрерывна в точке по определению непрерывности функции в точке.

Впрочем, ненавистники матана могут доопределить функцию нехорошим способом, например :


Любопытно, что здесь выполнены первые два условия непрерывности:
1) – функция определена в данной точке;
2) – общий предел существует.

Но третий рубеж не пройден: , то есть предел функции в точке не равен значению данной функции в данной точке.

Таким образом, в точке функция терпит разрыв.

Второй, более грустный случай носит название разрыва первого рода со скачком . А грусть навевают односторонние пределы, которые конечны и различны . Пример изображён на втором чертеже урока. Такой разрыв возникает, как правило, в кусочно-заданных функциях , о которых уже упоминалось в статье о преобразованиях графиков .

Рассмотрим кусочную функцию и выполним её чертёж. Как построить график? Очень просто. На полуинтервале чертим фрагмент параболы (зеленый цвет), на интервале – отрезок прямой (красный цвет) и на полуинтервале – прямую (синий цвет).

При этом в силу неравенства значение определено для квадратичной функции (зелёная точка), и в силу неравенства , значение определено для линейной функции (синяя точка):

В самом-самом тяжёлом случае следует прибегнуть к поточечному построению каждого куска графика (см. первый урок о графиках функций ).

Сейчас нас будет интересовать только точка . Исследуем её на непрерывность:

2) Вычислим односторонние пределы.

Слева у нас красный отрезок прямой, поэтому левосторонний предел:

Справа – синяя прямая, и правосторонний предел:

В результате получены конечные числа , причем они не равны . Поскольку односторонние пределы конечны и различны : , то наша функция терпит разрыв первого рода со скачком .

Логично, что разрыв не устраним – функцию действительно не доопределить и «не склеить», как в предыдущем примере.

Точки разрыва второго рода

Обычно к данной категории хитро относят все остальные случаи разрыва. Всё перечислять не буду, поскольку на практике в 99%-ти процентах задач вам встретится бесконечный разрыв – когда левосторонний или правосторонний, а чаще, оба предела бесконечны.

И, конечно же, самая напрашивающаяся картинка – гипербола в точке ноль. Здесь оба односторонних предела бесконечны: , следовательно, функция терпит разрыв второго рода в точке .

Я стараюсь наполнять свои статьи максимально разнообразным содержанием, поэтому давайте посмотрим на график функции , который ещё не встречался:

по стандартной схеме:

1) Функция не определена в данной точке, поскольку знаменатель обращается в ноль.

Конечно, можно сразу сделать вывод о том, что функция терпит разрыв в точке , но хорошо бы классифицировать характер разрыва, что часто требуется по условию. Для этого:



Напоминаю, что под записью понимается бесконечно малое отрицательное число , а под записью – бесконечно малое положительное число .

Односторонние пределы бесконечны, значит, функция терпит разрыв 2-го рода в точке . Ось ординат является вертикальной асимптотой для графика.

Не редка ситуация, когда оба односторонних предела существуют, но бесконечен только один из них, например:

Это график функции .

Исследуем на непрерывность точку :

1) Функция не определена в данной точке.

2) Вычислим односторонние пределы:

О методике вычисления таких односторонних пределов поговорим в двух последних примерах лекции, хотя многие читатели всё уже увидели и догадались.

Левосторонний предел конечен и равен нулю (в саму точку мы «не заходим»), но правосторонний предел бесконечен и оранжевая ветка графика бесконечно близко приближается к своей вертикальной асимптоте , заданной уравнением (чёрный пунктир).

Таким образом, функция терпит разрыв второго рода в точке .

Как и для разрыва 1-го рода, в самой точке разрыва функция может быть определена. Например, для кусочной функции смело ставим чёрную жирную точку в начале координат. Справа же – ветка гиперболы, и правосторонний предел бесконечен. Думаю, почти все представили, как выглядит этот график.

То, чего все с нетерпением ждали:

Как исследовать функцию на непрерывность?

Исследование функции на непрерывность в точке проводится по уже накатанной рутинной схеме, которая состоит в проверке трёх условий непрерывности:

Пример 1

Исследовать функцию

Решение :

1) Под прицел попадает единственная точка , в которой функция не определена.

2) Вычислим односторонние пределы:

Односторонние пределы конечны и равны.

Таким образом, в точке функция терпит устранимый разрыв.

Как выглядит график данной функции?

Хочется провести упрощение , и вроде бы получается обычная парабола. НО исходная функция не определена в точке , поэтому обязательна следующая оговорка:

Выполним чертёж:

Ответ : функция непрерывна на всей числовой прямой кроме точки , в которой она терпит устранимый разрыв.

Функцию можно доопределить хорошим или не очень способом, но по условию этого не требуется.

Вы скажете, пример надуманный? Ничуть. Десятки раз встречалось на практике. Почти все задачи сайта родом из реальных самостоятельных и контрольных работ.

Разделаемся с любимыми модулями:

Пример 2

Исследовать функцию на непрерывность. Определить характер разрывов функции, если они существуют. Выполнить чертёж.

Решение : почему-то студенты боятся и не любят функции с модулем, хотя ничего сложного в них нет. Таких вещей мы уже немного коснулись на уроке Геометрические преобразования графиков . Поскольку модуль неотрицателен, то он раскрывается следующим образом: , где «альфа» – некоторое выражение. В данном случае , и наша функция должна расписаться кусочным образом:

Но дроби обоих кусков предстоит сократить на . Сокращение, как и в предыдущем примере, не пройдёт без последствий. Исходная функция не определена в точке , так как знаменатель обращается в ноль. Поэтому в системе следует дополнительно указать условие , и первое неравенство сделать строгим:

Теперь об ОЧЕНЬ ПОЛЕЗНОМ приёме решения : перед чистовым оформлением задачи на черновике выгодно сделать чертёж (независимо от того, требуется он по условию или нет). Это поможет, во-первых, сразу увидеть точки непрерывности и точки разрыва, а, во-вторых, 100%-но убережёт от ошибок при нахождении односторонних пределов.

Выполним чертёж. В соответствии с нашими выкладками, слева от точки необходимо начертить фрагмент параболы (синий цвет), а справа – кусок параболы (красный цвет), при этом функция не определена в самой точке :

Если есть сомнения, возьмите несколько значений «икс», подставьте их в функцию (не забывая, что модуль уничтожает возможный знак «минус») и сверьтесь с графиком.

Исследуем функцию на непрерывность аналитически:

1) Функция не определена в точке , поэтому сразу можно сказать, что не является в ней непрерывной.

2) Установим характер разрыва, для этого вычислим односторонние пределы:

Односторонние пределы конечны и различны, значит, функция терпит разрыв 1-го рода со скачком в точке . Ещё раз заметьте, что при нахождении пределов не имеет значения, определена функция в точке разрыва или нет.

Теперь остаётся перенести чертёж с черновика (он сделан как бы с помощью исследования;-)) и завершить задание:

Ответ : функция непрерывна на всей числовой прямой кроме точки , в которой она терпит разрыв первого рода со скачком.

Иногда требуют дополнительно указать скачок разрыва. Вычисляется он элементарно – из правого предела нужно вычесть левый предел: , то есть в точке разрыва наша функция прыгнула на 2 единицы вниз (о чём нам сообщает знак «минус»).

Пример 3

Исследовать функцию на непрерывность. Определить характер разрывов функции, если они существуют. Сделать чертёж.

Это пример для самостоятельного решения, примерный образец решения в конце урока.

Перейдём к наиболее популярной и распространённой версии задания, когда функция состоит из трёх кусков:

Пример 4

Исследовать функцию на непрерывность и построить график функции .

Решение : очевидно, что все три части функции непрерывны на соответствующих интервалах, поэтому осталось проверить только две точки «стыка» между кусками. Сначала выполним чертёж на черновике, технику построения я достаточно подробно закомментировал в первой части статьи. Единственное, необходимо аккуратно проследить за нашими особенными точками: в силу неравенства значение принадлежит прямой (зелёная точка), и в силу неравенство значение принадлежит параболе (красная точка):


Ну вот, в принципе, всё понятно =) Осталось оформить решение. Для каждой из двух «стыковых» точек стандартно проверяем 3 условия непрерывности:

I) Исследуем на непрерывность точку

1)



Односторонние пределы конечны и различны, значит, функция терпит разрыв 1-го рода со скачком в точке .

Вычислим скачок разрыва как разность правого и левого пределов:
, то есть, график рванул на одну единицу вверх.

II) Исследуем на непрерывность точку

1) – функция определена в данной точке.

2) Найдём односторонние пределы:

– односторонние пределы конечны и равны, значит, существует общий предел.

3) – предел функции в точке равен значению данной функции в данной точке.

На завершающем этапе переносим чертёж на чистовик, после чего ставим финальный аккорд:

Ответ : функция непрерывна на всей числовой прямой, кроме точки , в которой она терпит разрыв первого рода со скачком.

Пример 5

Исследовать функцию на непрерывность и построить её график .

Это пример для самостоятельного решения, краткое решение и примерный образец оформления задачи в конце урока.

Может сложиться впечатление, что в одной точке функция обязательно должна быть непрерывной, а в другой – обязательно должен быть разрыв. На практике это далеко не всегда так. Постарайтесь не пренебрегать оставшимися примерами – будет несколько интересных и важных фишек:

Пример 6

Дана функция . Исследовать функцию на непрерывность в точках . Построить график.

Решение : и снова сразу выполним чертёж на черновике:

Особенность данного графика состоит в том, что при кусочная функция задаётся уравнением оси абсцисс . Здесь данный участок прорисован зелёным цветом, а в тетради его обычно жирно выделяют простым карандашом. И, конечно же, не забываем про наших баранов: значение относится к ветке тангенса (красная точка), а значение принадлежит прямой .

Из чертежа всё понятно – функция непрерывна на всей числовой прямой, осталось оформить решение, которое доводится до полного автоматизма буквально после 3-4 подобных примеров:

I) Исследуем на непрерывность точку

1) – функция определена в данной точке.

2) Вычислим односторонние пределы:

, значит, общий предел существует.

На всякий пожарный напомню тривиальный факт: предел константы равен самой константе. В данном случае предел нуля равен самому нулю (левосторонний предел).

3) – предел функции в точке равен значению данной функции в данной точке.

Таким образом, функция непрерывна в точке по определению непрерывности функции в точке.

II) Исследуем на непрерывность точку

1) – функция определена в данной точке.

2) Найдём односторонние пределы:

И здесь – предел единицы равен самой единице.

– общий предел существует.

3) – предел функции в точке равен значению данной функции в данной точке.

Таким образом, функция непрерывна в точке по определению непрерывности функции в точке.

Как обычно, после исследования переносим наш чертёж на чистовик.

Ответ : функция непрерывна в точках .

Обратите внимание, что в условии нас ничего не спрашивали про исследование всей функции на непрерывность, и хорошим математическим тоном считается формулировать точный и чёткий ответ на поставленный вопрос. Кстати, если по условию не требуется строить график, то вы имеете полное право его и не строить (правда, потом преподаватель может заставить это сделать).

Небольшая математическая «скороговорка» для самостоятельного решения:

Пример 7

Дана функция . Исследовать функцию на непрерывность в точках . Классифицировать точки разрыва, если они есть. Выполнить чертёж.

Постарайтесь правильно «выговорить» все «слова» =) И график нарисовать поточнее, точность, она везде лишней не будет;-)

Как вы помните, я рекомендовал незамедлительно выполнять чертёж на черновике, но время от времени попадаются такие примеры, где не сразу сообразишь, как выглядит график. Поэтому в ряде случаев выгодно сначала найти односторонние пределы и только потом на основе исследования изобразить ветви. В двух заключительных примерах мы, кроме того, освоим технику вычисления некоторых односторонних пределов:

Пример 8

Исследовать на непрерывность функцию и построить её схематический график.

Решение : нехорошие точки очевидны: (обращает в ноль знаменатель показателя) и (обращает в ноль знаменатель всей дроби). Малопонятно, как выглядит график данной функции, а значит, сначала лучше провести исследование.