Меню
Бесплатно
Главная  /  Разное  /  Выращивание органов из стволовых клеток. Стволовые клетки - свойства, классификация, получение, выращивание и использование. Общие принципы лечения стволовыми клетками

Выращивание органов из стволовых клеток. Стволовые клетки - свойства, классификация, получение, выращивание и использование. Общие принципы лечения стволовыми клетками

Пообщалась с профессором Паоло Маккиарини , который вот уже 6 лет успешно занимается трансплантацией человеческих органов, выращенных из стволовых клеток пациента в лаборатории.

Что предсказывали фантасты и пророки

Последние 5 лет исследовательские лаборатории по всему миру активно занимаются выращиванием новых человеческих органов из стволовых клеток пациентов. СМИ пестрят сообщениями о созданных в лабораторных условиях ушах, хрящах, сосудах, коже и даже половых органах. Похоже, совсем скоро производство человеческих «запчастей» приобретет промышленные масштабы, и наступит предсказанная фантастами «эра постчеловека». Эра, которая поставит каждого перед дилеммой: продлить себе жизнь или умереть и остаться бессмертным в генах потомков.

Футурологи предрекали до появления «постчеловека» создание «трансчеловека». Совсем незаметно миллионы землян уже стали «транслюдьми»: это «дети из пробирок», люди с имплантами зубов и донорскими органами. Когда всё это вошло в нашу жизнь, последней цитаделью, которую должны были однажды покорить ученые, стало, пожалуй, выращивание человеческих «запчастей» в лаборатории.

Человечество всегда грезило этим. Классик научной фантастики Артур Кларк не сомневался, что ученые овладеют регенерацией в 21 веке, а его коллега Роберт Хайнлайн писал, что «тело будет чинить само себя - не заращивать раны шрамами, а воспроизводить утерянные органы ». Болгарская провидица Ванга предсказала возможность создания любых органов в 2046, назвав это достижение лучшим методом лечения. Знаменитый француз-прорицатель Нострадамус предсказал до 2015 революционные изменения в науке, в результате которых будут проводить операции с выращенными органами.

Если вы не доверяете пророкам, то вот прогноз от политиков. В 2010 британская The Daily Telegraph опубликовала доклад правительства Великобритании, посвященный профессиям, которые станут самыми востребованными в ближайшее десятилетие и к которым следует готовиться будущим участникам рынка труда. Возглавили список «производители искусственно выращенных органов», а на втором месте оказались «наномедики», которые будут заниматься научными разработками в этой сфере. В той же статье британский министр науки и инноваций Пол Дрейсон заявил, что эти профессии более не относятся к области научной фантастики.

Паоло Маккиарини в лаборатории.

Что сбылось

Мы беседуем в модном нью-йоркском ресторане Lavo. Публика, окружающая нас, и не подозревает, что мой собеседник - историческая личность, чьи научные достижения разглядел в далеком 16 веке королевский астролог Мишель де Нострадамус. Его зовут Паоло Маккиарини. Он первым в мире вырастил человеческий орган из стволовых клеток пациента в лаборатории, а затем успешно имплантировал его.

Профессор Маккиарини родился в Швейцарии в 1958, образование получал в Италии, США и Франции. Владеет пятью языками. Один из пионеров регенеративной медицины в мире. Специалист в области тканевой инженерии и стволовых клеток, он одновременно является ученым-биологом и действующим хирургом-трансплантологом. Возглавляет Центр регенеративной хирургии в шведском Каролинском институте (Комитет этого института определяет лауреатов Нобелевской премии в области физиологии и медицины).

Паоло Маккиарини - обладатель почетных научных наград, автор сотни публикаций в ведущих научных журналах мира, кавалер ордена Итальянской Республики «За заслуги в области науки», новатор и пионер в области выращивания и имплантации трахеи, созданной из стволовых клеток пациента. Этот список регалий рисует портрет недоступного и важного ученого мирового масштаба. Личное общение меняет это представление. Харизматичный и невероятно обаятельный, душа компании, красивый и элегантный, открытый и добрый. Неудивительно, что большинство отчаявшихся когда-то пациентов, которых он после прооперировал, без особых усилий нашли его через Google, введя в поисковик запросы «регенеративная медицина» или «стволовые клетки». У Маккиарини нет ассистентов и помощников - он лично отвечает на письма и ведет переговоры.

В 2008 все мировые СМИ облетела сенсационная новость. Международная группа ученых во главе с профессором Маккиарини провела первую в истории операцию по пересадке пациентке трахеи, выращенной из ее клеток на каркасе в биореакторе.

Трахея - жизненно важный орган. Эта, говоря простым языком, трубка длиной 10-13 см соединяет нос и легкие, а следовательно, обеспечивает дыхание и поступление кислорода в организм. Прежде пересадка трахеи (например, донорской) была невозможна. Так, благодаря Маккиарини, впервые пациенты с травмами, опухолями и другими нарушениями трахеи получили шанс на выздоровление.

На сегодняшний день профессор сделал около 20 операций по пересадке «выращенной» трахеи.

Маккиарини в фокусе США и России


Профессор Маккиарини с каркасом трахеи.

Достижения европейского ученого не остались не замеченными в США. Летом 2014 американская телекорпорация NBC сняла о Маккиарини 2-часовой документальный фильм «A Leap of Faith» («Прыжок веры»), в котором подробно показаны все этапы «выращивания» человеческого органа, снабженные интервью и историями всех пациентов. Создателям картины удалось передать зрителям и бешеный график профессора, который спит в самолетах, накануне трансплантации ночует возле «выращенного» органа, дает мастер-классы и делает сложнейшие операции по всему миру, а также дружит с семьями пациентов, которым, увы, его операция лишь продлила жизнь, но не смогла избавить от первоначальной необратимой болезни.

В фильме объективно затронута и обратная сторона успеха профессора, который пережил волну международной критики за экспериментальные операции на людях. Неоднократно в обществе поднимались вопросы биоэтики. В интервью авторам фильма ученый признался, что такое давление не раз приводило его к мысли бросить всё, но успешные операции возвращали веру. К тому же идею от первой имплантации разделяло почти 25 лет исследований, за которые он выработал свой девиз: «Никогда не сдаваться».

Пристально следила за «выращиванием органов» и Россия. Чтобы не упустить ученого такого калибра, российское правительство выделило в 2011 беспрецендентный грант в размере 150 млн рублей . Осваивать эти деньги Маккиарини предложили на базе Кубанского медицинского университета в Краснодаре.

16 российских специалистов профессор направил на учебу в свой родной Каролинский институт и планирует сделать из них ученых мирового класса. Самому Маккиарини грант позволил не думать о поиске спонсоров и сосредоточиться на спасении жизни пациентов, которых он уже оперирует бесплатно в Краснодаре за счет гранта. Можно сказать, что благодаря профессору Россия создает ведущую в мире лабораторию по созданию человеческих органов.

Все тот же российский грант позволил Маккиарини применить свое ноу-хау для создания уже других органов. Так, полным ходом идут успешные эксперименты по выращиванию сердца крысы, совместно с Техасским институтом сердца планируется вырастить сердце для примата. В процессе - проект по выращиванию пищевода и диафрагмы. И это - только начало новой эры в биоинженерии. В скором будущем технологии должны достичь совершенства, пройти клинические испытания и встать на поток. Тогда больные перестанут умирать, не дождавшись донора, а тем, кому пересадят выращенный из собственных клеток орган, не нужно будет принимать всю жизнь иммуноподавляющие препараты во избежание отторжения.


Фото из архива Паоло Маккиарини

Каркас трахеи “обрастает” стволовыми клетками пациента в биореакторе.

Трахею можно вырастить за 48 часов, сердце - за 3-6 недель

F : Профессор Маккиарини, то, что вы делаете, для простого обывателя звучит фантастически. Например, как вы выращиваете орган отдельно от тела человека?

Если вы думаете, что в лаборатории вырастает целая трахея, - это глубокое заблуждение. На самом деле мы берем каркас определенного органа, изготовленного по размерам пациента из нанокомпозитного материала. Затем засеиваем каркас стволовыми клетками пациента, взятыми из его же костного мозга (клетки-монуклеары) и помещаем в биореактор. В нем клетки «приживаются» (прикрепляются) к каркасу. Полученную основу мы имплантируем на место поврежденной трахеи, и именно там, в теле пациента, в течение нескольких недель формируется необходимый орган.

F : Что такое биореактор? И сколько времени занимает выращивание органа?

Биореактор - это устройство, в котором созданы оптимальные условия для роста и размножения клеток. Он обеспечивает им питание, дыхание, отводит продукты обмена веществ. В течение 48-72 часов каркас обрастает этими клетками, и «выращенная трахея» готова для пересадки больному. А вот для выращивания сердца потребуется 3-6 недель.

F : А как клетки из костного мозга вдруг «превращаются» в клетки именно трахеи после пересадки? Это и есть загадочная «самоорганизация клеток в сложные ткани»?

Основной механизм «превращения» точно еще не изучен, но есть основания полагать, что клетки костного мозга сами изменяют свой фенотип, чтобы стать, например, клетками трахеи. Это преобразование происходит благодаря местным и системным сигналам организма.

F : Бывали ли случаи, когда орган, созданный из клеток самого пациента, все равно отторгался или плохо приживался?

Так как используются собственные клетки пациента, мы ни разу не наблюдали каких-либо отторжений органа после пересадки. Тем не менее, мы зафиксировали развитие реагирующих тканей, которые связаны больше с биомеханикой нового органа, но не клетки.

F : Какие еще органы вы собираетесь выращивать в лаборатории?

В области тканевой инженерии (tissue engineering) мы сейчас работаем над выращиванием диафрагмы, пищевода, легких и сердца для мелких животных и для нечеловекообразных приматов.

F : Какие органы вырастить сложнее всего?

Самое сложное для биоинженеров - вырастить 3D-органы: сердце, печень и почки. Вернее, вырастить их можно, но трудно заставить их выполнять свои функции, вырабатывать необходимые вещества, потому что у этих органов самые сложные функции. Но уже достигнут определенный прогресс, так что рано или поздно этот тип трансплантации, как ожидается, станет реальностью.

F : Но в последнее время стволовые клетки ассоциируются со стимулированием развития рака...

Уже доказано, что местные стволовые клетки могут ускорить процесс развития опухоли, но, главное, они не вызывают рак. Если эта взаимосвязь подтвердится и в других типах опухолей, это поможет ученым разработать лекарства или факторы роста, которые, наоборот, будут атаковать или блокировать рост опухоли. В конечном счете, это может на самом деле открыть дверь к новым средствам лечения рака, которые пока не доступны.

F : Манипуляции со стволовыми клетками пациента в лаборатории до пересадки влияют на качество этих клеток?

В нашей клинической практике такого никогда не было.

F : Читала, что даже выращивание мозга входит в ваши планы. Разве это возможно со всеми нейронами?

Используя достижения в области тканевой инженерии, мы пытаемся разработать мозговое вещество, которое может быть использовано для нейрогенной регенерации в случае утраты мозгового вещества. Вырастить весь мозг, увы, невозможно.

F : Уверена, что многих интересует финансовый вопрос. Сколько стоит, например, вырастить и имплантировать трахею?

Как для меня, так и для моих пациентов спасение жизни и возможность выздоровления важнее всех денег на Земле. Однако мы имеем дело с экспериментальной хирургией, а это дорогостоящий метод лечения. Но наша команда всегда старается смягчить расходы по трансплантации для пациентов. Стоимость сильно варьируется в зависимости от страны. В Краснодаре, благодаря гранту, операция по пересадке трахеи составляет всего $15 тыс . В Италии подобные операции обходились в $80 тыс. , а первые операции в Стокгольме стоили около $ 400 тыс.

F : С внутренними органами все понятно. А есть ли возможность выращивать конечности? Возможна ли пересадка рук, ног?

Пока, к сожалению, нет. Но такие пациенты получили, помимо протезирования, новый метод успешной замены конечностей - с помощью 3D-биопринтера.

Эликсир молодости - внутри каждого из нас


Фото из архива Паоло Маккиарини.

Человеческое сердце и легкое в биореакторе (в процессе “выращивания”).

F : В одном из интервью вы сказали что ваша мечта - навсегда забыть о выращивании и трансплантации органов, заменив ее на инъекции стволовых клеток пациента из его костного мозга для регенерации поврежденных тканей организма. Через сколько лет такой метод станет доступным?

Да, это моя мечта, и мы ежедневно напряженно работаем, чтобы однажды она осуществилась. И, кстати, мы не так уж далеко от цели!

F : Может ли метод использования стволовых клеток помочь обездвиженным людям с травмами позвоночника?

На этот вопрос очень сложно ответить. Многое зависит от пациента, от степени повреждения, от размеров пораженного участка, от времени... Однако лично я считаю, что терапия стволовыми клетками имеет огромный потенциал в этой области.

F : Получается, панацея от всех болезней и эликсир молодости найдены: это - стволовые клетки костного мозга. Рано или поздно метод регенерации любых тканей этими клетками станет доступным и массовым. Что дальше? Люди получат возможность выращивать новые органы, омолаживать дряхлеющие ткани и неоднократно продлять жизнь? Есть ли предел у организма при таких манипуляциях или можно достичь бессмертия?

Думаю, мы не сможем кардинально изменить прекрасные творения природы. На этот вопрос сложно дать прямой ответ, так как в науке еще столько неизвестного. Плюс это будет вызов социальным и этическим вопросам. В будущем возможно всё, но в данный момент наша задача - спасать жизни пациентов, чей единственный шанс - регенеративная медицина.

F : Насколько велика сейчас международная конкуренция в области выращивания органов? Какие страны лидируют в этой сфере?

Если ответить коротко, лидерами станут те страны, которые уже сейчас инвестируют в регенеративную медицину.

F : Планируете ли вы сами лет через 20, например, воспользоваться новыми технологиями для омоложения своего организма?

Скорее всего, нет. Для тех, кто ищет эликсир молодости, предлагаю отбросить все медицинские и научные достижения в сторону. Лучший метод омоложения - это любовь. Любите и будьте любимыми!

Улучшение состояние здоровья человека, спасение жизни, увеличение ее продолжительности — эти вопросы были, есть и будут самыми актуальными для человечества. Именно поэтому тема выращивания искусственных органов в России в 2018 году занимает умы российских ученых, стоит на повестке дня Министерства здравоохранения и широко обсуждается в СМИ.

Дает большие надежды, что отрасль научной медицины — биоинженерные технологии, будет, наконец, иметь полноценную законодательную основу. Это позволит заниматься разработками, проводить доклинические и клинические исследования, практически использовать клеточные продукты, руководствуясь и опираясь на нормативно-правовую базу.

Закон о биомедицинских клеточных продуктах

Главная для ученых и медиков — в России с января 2017 года вступил в силу закон «О биомедицинских клеточных продуктах».

Он разработан в рамках реализации стратегии развития науки в Российской Федерации до 2025 года и направлен на регулирование отношений в связи с разработкой, исследованиями, регистрацией, производством и контролем качества, применением в лечебной практике биологических медицинских клеточных продуктов (БМКП).

Также это закон обеспечит законодательный базис для создания в сфере здравоохранения новой индустрии, которая производством и использованием клеточного продукта решит проблемы восстановления функций и структур тканей тела человека поврежденных заболеваниями, травмами, нарушениями при внутриутробном развитии.

Основной целью федерального закона является закрепление обособленного урегулирования деятельности по обращению БМКП, которая до недавнего времени была разрозненной, неполной и в основном незаконной.

Теперь организации и предприятия, которые занимались биопродуктами нелегально, парализованы. Именно поэтому принятию закона было оказано сопротивление и создавалось множество препятствий. Негативные последствия от принятия закона ощутят только те, кто осуществлял деятельность в области применения клеточного материала нелегально, то есть, нарушали закон.

Для отрасли в целом, закон обеспечивает цивилизованные пути развития, расширение возможностей, а для пациентов гарантирует получение качественного, безопасного продукта.

Новая эпоха в медицине

Вместе с поиском и разработкой эффективных методов лечения и восстановления организма человека, российская медицина ведет активную работу над созданием искусственных органов. Этой темой стали заниматься более пятидесяти лет назад, с того времени, когда методика пересадки донорских органов из теории перешла в практику.

Донорство спасло много жизней, но этот метод имеет значительный ряд проблем — нехватка донорских органов, несовместимость, отторжение иммунной системой. Поэтому идея выращивания искусственных органов с энтузиазмом была подхвачена учеными медиками всего мира.

Методика замещения поврежденных тканей искусственным клеточным продуктом, введенным извне, или путем активизирования собственных клеток основывается на жизнеспособности БМКТ и способности постоянно находиться в организме пациента. Это дает большие возможности для результативного лечения болезней и спасения многих жизней.

На сегодняшний день применение биоинженерных технологий в медицине достигло значительных результатов. Уже апробированы методики выращивания некоторых органов непосредственно в организме человека, так и вне тела. Есть возможность вырастить орган из клеток того человека, которому он впоследствии будет вживлен.

Применение искусственно созданных простых тканей уже имеют место в клинической практике. По словам Юрия Суханова, исполнительного директора Объединения экспертов по биомедицинским клеточным технологиям и регенеративной медицине, российскими учеными подготовлены к испытаниям ряд важных и необходимых продуктов.

«Это противораковые вакцины на основе живых клеток человека, препараты для лечения диабета с помощью инсулинпродуцирующих клеток, которые будут имплантироваться пациенту. Разумеется кожа – ожоги, раны, диабетическая стопа. Выращивание из клеток хряща, кожи, роговицы, уретры. И, конечно, клеточные вакцины – самое интересное и эффективное, что сейчас есть» — отметил Юрий Суханов.

Российские ученые создали искусственную печень и провели доклинические испытания продукта на животных, которые показали очень хорошие результаты. Элемент выращенного органа был имплантирован в поврежденные ткани печени животных.

В результате клетки искусственной печени способствовали регенерации тканей, и через время поврежденный орган полностью восстановился. При этом не произошло отрицательного влияния на продолжительность жизни подопытного животного.

Регенеративная медицина — это наше будущее, которое закладывается уже сегодня. Возможности у нее колоссальные. Тем более что традиционная медицина достигла определенного уровня, и сейчас не может предложить результативных методов лечения многих опасных болезней, уносящих миллионы жизней.

Медицинской науке необходима революция, мощный прорыв, которым станет приход клеточных технологий. Победить неизлечимые заболевания, снизить продолжительность и стоимость лечения, сделать доступным замену утраченного или нежизнеспособного органа и таким образом спасти и продлить жизнь — все это нам дает новая перспективная отрасль медицинской науки — тканевая инженерия.

Закон «О биомедицинских клеточных продуктах» принятый в 2017 году, начал полноценно работать. И теперь ученые имеют гораздо больше возможностей для новых исследований и открытий в области клеточных технологий и выращивания искусственных органов в России.

Прежде чем мы перейдем к непосредственному рассказу о выращивание органов, я хотел бы посвятить вас, что такое стволовые клетки.

Что такое стволовые клетки?

Стволовые клетки - прародительницы всех без исключения типов клеток в организме. Они способны к самообновлению и, что самое главное, в процессе деления образуют специализированные клетки различных тканей. Стволовые клетки обновляют и замещают клетки, утраченные в результате каких-либо повреждений во всех органах и тканях. Они призваны восстанавливать организм человека с момента его рождения.

С возрастом количество стволовых клеток в организме катастрофически снижается. У новорожденного 1 стволовая клетка встречается на 10 тысяч, к 20-25 годам – 1 на 100 тысяч, к 30 – 1 на 300 тысяч. К 50-летнему возрасту в организме уже остается всего 1 стволовая клетка на 500 тысяч. Истощение запаса стволовых клеток вследствие старения или тяжёлых заболеваний лишает организм возможностей самовосстановления. Из-за этого жизнедеятельность тех или иных органов становится менее эффективной.

Какие органы и ткани ученые смогли вырастить с помощью стволовых клеток?

Привожу только самые известные примеры научных достижений.

в 2004 году японские ученые впервые в мире вырастили структурно полноценные капиллярные кровеносные сосуды из стволовых клеток

Японские ученые первыми в мире вырастили структурно полноценные капиллярные кровеносные сосуды из стволовых клеток человеческого эмбриона. Об этом 26 марта 2004 года сообщила японская газета Yomiuri.

Как отмечает издание, группа исследователей из медицинской школы Киотского университета под руководством профессора Кадзува Накао использовала капиллярные клетки, генерированные из стволовых клеток, импортированных в 2002 году из Австралии. До сих пор исследователям удавалось регенерировать лишь нервные клетки и мышечную ткань, что недостаточно для "производства" цельного органа. Информация с сайта NewsRu.com

В 2005 году американские ученые впервые вырастили полноценные клетки головного мозга

Ученые из Флоридского университета (США) первыми в мире вырастили полностью сформированные и приживающиеся клетки головного мозга. Как сообщил руководитель проекта Бьорн Шеффлер, вырастить клетки удалось путем «копирования» процесса регенерации клеток головного мозга. Теперь ученые надеются выращивать клетки для трансплантации, что может помочь в лечении болезней Альцгеймера и Паркинсона.Шеффлер отметил, что ранее ученым удавалось выращивать нейроны из стволовых клеток, однако именно во Флоридском университете удалось получить полноценные клетки и изучить процесс их роста от начала до конца. Информация с сайта Газета.ру по материалам Independent.

В 2005 году ученым удалось воспроизвести нервную стволовую клетку

Итальянско-британская группа ученых из эдинбургского и миланского университетов на основе неспециализированных эмбриональных стволовых нервных клеток научилась создавать in vitro различные типы клеток нервной системы.

Ученые применили уже разработанные методы управления эмбриональными стволовыми клетками к полученным ими более специализированным нервным стволовым клеткам. Результаты, которые были достигнуты на клетках мышей, были воспроизведены и на человеческих стволовых клетках. В интервью, данном агентству BBC, Стивен Поллард из Эдинбургского университета пояснил, что разработка его коллег поможет воссоздать болезнь Паркинсона или болезнь Альцгеймера «в пробирке». Это позволит лучше понять механизм их возникновения и развития, а также обеспечит фармакологов мини-полигоном для поиска подходящих средств лечения. Соответствующие переговоры с фармакологическими компаниями уже ведутся.

В 2006 году швейцарсцкие ученые вырастили из стволовых клеток клапаны человеческого сердца

Осенью 2006 года доктор Саймон Хоерстрап и его коллеги из университета Цюриха впервые вырастили человеческие сердечные клапаны, воспользовавшись стволовыми клетками, взятыми из околоплодной жидкости.

Это достижение может сделать реальным выращивание клапанов сердца специально для ещё не родившегося ребёнка, если у него, ещё в утробе матери, обнаружатся дефекты сердца. А вскоре после рождения младенцу можно будет пересадить новые клапаны.

Вслед за выращиванием в лаборатории из клеток человека мочевого пузыря и кровеносных сосудов - это следующий шаг на пути создания «собственных» органов для конкретного пациента, способных устранить потребность в донорских органах или искусственных механизмах.

В 2006 году британские ученые вырастили из стволовых клеток ткани печени

Осенью 2006 года британские ученые из университета Ньюкасла объявили о том, что первыми в мире вырастили в лабораторных условиях искусственную печень из стволовых клеток, взятых из пуповинной крови. Техника, которая использовалась при создании «минипечени», размером в 2 см, будет разрабатываться дальше, чтобы создать нормально функционирующую печень стандартного размера.

В 2006 году в США впервые выращен сложный человеческий орган - мочевой пузырь

Американские ученые смогли вырастить в лабораторных условиях полноценный мочевой пузырь. В качестве материала были использованы клетки самих пациентов, нуждающихся в пересадке.

"Путем биопсии можно взять кусочек ткани, а спустя два месяца ее количество умножится в несколько раз, - объясняет директор института регенеративной медицины Энтони Атала. - Исходный материал и особые вещества мы кладем в специальную форму, оставляем в специальном лабораторном инкубаторе и через несколько недель получаем готовый орган, который уже можно пересаживать". Первую трансплантацию провели еще в конце 90-х. Операцию по пересадке мочевого пузыря сделали семи пациентам. Результаты оправдали ожидания ученых, и сейчас специалисты разрабатывают методы создания еще 20-ти органов - среди них сердце, печень, кровеносные сосуды и поджелудочная железа.

В 2007 году стволовые клетки помогли британским ученым создать часть сердца человека

Весной 2007 года группе британских ученых, состоящая из физиков, биологов, инженеров, фармакологов, цитологов и опытных клиницистов, под руководством профессора кардиохирургии Магди Якуба впервые в истории удалось воссоздать одну из разновидностей тканей человеческого сердца при помощи стволовых клеток костного мозга. Эта ткань выполняет роль сердечных клапанов. Если дальнейшие испытания пройдут успешно, разработанную методику можно будет применять для выращивания из стволовых клеток полноценного сердца для трансплантации больным.

В 2007 году японские ученые вырастили из стволовых клеток роговицу глаза

Весной 2007 года на симпозиуме по вопросам репродуктивной медицины в городе Иокогама были обнародованы результаты уникального эксперимента специалистов Токийского университета. Исследователи использовали стволовую клетку, взятую из края роговицы. Такие клетки способны развиваться в различные ткани, выполняя в организме восстановительные функции. Выделенная клетка была помещена в питательную среду. Спустя неделю она развилась в группу клеток, а на четвертой неделе преобразовалась в роговицу диаметром 2 см. Таким же образом был получен тонкий защитный слой (конъюнктива), покрывающий роговицу снаружи.

Ученые подчеркивают, что впервые полноценная ткань человеческого организма выращена из единственной клетки. Пересадка органов, полученных новым способом, исключает риск переноса инфекций. Японские ученые намерены приступить к клиническим испытаниям сразу после того, как удостоверяться в безопасности новой технологии.

В 2007 году японские ученые вырастили зуб из стволовых клеток

Японским ученым удалось вырастить зуб из одной клетки. Его вырастили в лабораторных условиях и пересадили мыши. Инъекция клеточного материала была произведена в коллагеновый каркас. После выращивания оказалось, что зуб принял зрелую форму, которая состояла из полноценных частей, таких как дентин, пульпа, сосуды, периодонтальные ткани, и эмаль. По словам исследователей, зуб был идентичен естественному. После трансплантации зуба лабораторной мыши он прижился и функционировал полностью нормально. Данный метод позволит выращивать целые органы из одной-двух клеток, говорят исследователи.

В 2008 году американские ученые смогли вырастить новое сердце на каркасе от старого

Дорис Тейлор (Doris Taylor) и её коллеги из университета Миннесоты (University of Minnesota) создали живое сердце крысы, используя необычную технику. Ученые взяли взрослое сердце крысы и поместили его в специальный раствор, который удалил из сердца все клетки мышечной сердечной ткани, оставив другие ткани нетронутыми. Этот очищенный каркас был засеян клетками сердечной мышцы, взятыми у новорождённой крысы, и помещён в среду, имитирующую условия в организме.

Всего через четыре дня клетки размножились настолько, что начались сокращения новой ткани, а через восемь дней реконструированное сердце уже могло качать кровь, хотя и всего на 2-процентном уровне мощности (считая от здорового взрослого сердца). Таким образом, учёные получили работоспособный орган из клеток второго животного. Этим путём в будущем можно было бы обрабатывать сердца, взятые для пересадки, для исключения отторжения органа. "Так вы можете сделать любой орган: почку, печень, лёгкое, поджелудочную железу", - говорит Тейлор. Донорский каркас, определяющий форму и структуру органа, будет наполняться родными для больного специализированными клетками, сделанными из стволовых.

Любопытно, что в случае с сердцем в качестве основы можно попробовать взять сердце свиньи, анатомически близкое к человеческому. Удалив только мышечную ткань, прочие ткани такого органа можно будет уже дополнить культивированными человеческими клетками сердечной мышцы, получив гибридный орган, который, по идее, должен хорошо прижиться. А новые клетки будут сразу хорошо снабжаться кислородом - благодаря старым сосудам и капиллярам, оставшимся от сердца донора.

Я привел наиболее интересные факты, если вас заинтересовала эта информация то вы можете углубиться в нее подробней, информация была взята с сайта

Искусственные человеческие органы скоро станут выращивать в строящейся при Военно-медицинской академии имени Кирова клинике в Санкт-Петербурге. Решение о строительстве клиники принял министр обороны. Многопрофильный центр планируют оснастить самым современным оборудованием, которое позволит самым подробным образом изучать стволовые клетки. Научно-технический отдел, который займётся клеточными технологиями, уже сформирован.

«Основным направлением работы отдела станет создание биологического банка и создание возможностей для выращивания искусственных органов, - говорит начальник отдела организации научной работы и подготовки научно-педагогических кадров академии Евгений Ивченко. - Российские учёные давно работают над искусственными органами».

Два года назад завотделом Федерального научного центра трансплантологии и искусственных органов имени академика В.И. Шумакова Мурат Шагидулин сообщил о создании искусственного аналога печени, пригодного для пересадки. Учёные смогли получить искусственную печень и протестировать её в доклинических условиях. Орган вырастили на основе бесклеточного каркаса печени, из которой заранее по специальной технологии удалили все ткани. Остались только белковые структуры кровеносных сосудов и других компонентов органа. Каркас засеяли аутологичными клетками костного мозга и печени. Эксперименты на животных показали: если выращенный элемент имплантировали в печень или брызжейку тонкой кишки, он способствовал регенерации тканей и давал полное восстановление функции повреждённого органа. Животные представляли собой модели острой и хронической печёночной недостаточности. И выращенный элемент позволял увеличить выживаемость в два раза. Спустя год после имплантации все животные были ещё живы. Между тем в контрольной группе умерло около 50% особей. Через семь дней после имплантации в основной группе биохимические показатели функции печени уже были на уровне нормы. По прошествии 90 дней после пересадки в брызжейку тонкой кишки учёные нашли там жизнеспособные гепатоциты и новые сосуды, которые проросли через каркас элемента.

«Исследования в области создания таких сложных биоинженерных органов, как печень, почки, лёгкие и сердце, в последние годы ведутся в ведущих научных лабораториях США и Японии, но дальше стадии изучения на животной модели они пока не продвинулись, - комментирует заведующий отделом экспериментальной трансплантологии и искусственных органов Центра Мурат Шагидулин. - Наши опыты на животных прошли хорошо. Спустя три месяца после трансплантации в телах животных обнаружили здоровые клетки печени и новые кровеносные сосуды. Это говорило о протекавшем процессе регенерации пересаженной печени и том, что она прижилась».

Японские учёные из Университета Йокогамы сумели вырастить печень размером в несколько миллиметров. Они смогли сделать это благодаря индуцированным плюрипотентным стволовым клеткам (iPSCs). Выращенная печень работает как полноценный орган. По словам руководителя исследовательской группы профессора Хидэки Танигути, минипечень справляется с переработкой вредных веществ столь же эффективно, что и реальный человеческий орган. Учёные надеются начать клинические испытания искусственной печени в 2019 г. Новые, созданные в лаборатории органы, будут пересаживать пациентам с тяжёлыми заболеваниями печени для поддержания её нормальных функций.

Несколько ранее японские учёные лабораторным путём почти приблизились к новейшему открытию - созданию полностью функционирующих почек, способных заменить настоящие. До этого прототипы искусственной почки создавались. Но им не удавалось нормально выводить мочу (раздувались от давления). Однако японцы исправили ситуацию. Специалисты уже вполне успешно пересаживают искусственные почки свиньям и крысам.
Доктор Такаси Йооко и его коллеги из Медицинской школы Университета Дзинкей использовали стволовые клетки, но не просто вырастили ткани почки, а вырастили и дренажную трубку, и мочевой пузырь. В свою очередь, крысы, а потом и свиньи, были инкубаторами, в которых уже развивалась и росла эмбриональная ткань. Когда новую почку соединили с существовавшим в теле животных мочевым пузырем, система заработала в целом. Моча шла из пересаженной почки в пересаженный мочевой пузырь, и лишь после этого она попадала в мочевой пузырь животного. Как показали наблюдения, система работала и через восемь недель после трансплантации.

По словам учёных, в перспективе, возможно, удастся создать и полноценные имплантаты голосовых связок для людей. Исследователи собрали фрагменты ткани четырёх людей, страдающих проблемами с голосовыми связками. Этим пациентам связки были удалены. Была также забрана ткань у одного умершего донора. Специалисты изолировали, очистили и вырастили клетки слизистой оболочки в особой трёхмерной структуре, имитирующей среду тела человека. Примерно за две недели клетки срослись и сформировали ткань, напоминающую по эластичности и клейкости реальные голосовые связки. Потом специалисты присоединили полученные голосовые связки к искусственной трахее и пропустили через них увлажнённый воздух. Когда воздух доходил до связок, ткани вибрировали и продуцировали звук, как бы это происходило при нормальных условиях в организме. В ближайшее время врачи ждут закрепления полученного результата на нуждающихся в нём людях.

Современная медицина может творить настоящие чудеса. С каждым годом ученые находят все новые и новые методы терапии различных патологических состояний, и особенный интерес представляют собой новейшие технические достижения. Врачи уверены, что совсем скоро им удастся лечить болезни на расстоянии, проходить диагностику всего организма за считанные минуты и предупреждать заболевания с использованием современных компьютерных технологий. И такая казалось бы фантастика, как выращивание органов человека для пересадки, понемногу становится реальностью.

На сегодняшний день ученые ведут множество активных разработок и исследований, которые касаются органов человеческого тела. Наверное, каждый из нас слышал, что в современном мире огромное количество людей нуждается в пересадке органов или тканей, и никакие объемы донорских материалов не могут покрыть эту потребность. Поэтому ученые не первый год занимаются разработкой технологий, которые позволяют справиться с такой ситуацией. И на сегодняшний день продолжается активная разработка метода «выращивания» органов. В качестве исходного материала при этом используют стволовые клетки организма, способные адаптироваться под особенности любого органа.

Искусственное выращивание органов человека

На сегодняшний день уже изобретено несколько технологий для активного выращивания органов из стволовых клеточек. Еще в 2004 году ученым удалось создать полностью функциональные капиллярные сосуды. А в 2005 году были выращены полноценные клеточки головного мозга и нервной системы. В 2006 году швейцарским медикам удалось вырастить клапаны сердца, а британским – клеточки тканей печени. В том же году американцы создали полноценный орган – мочевой пузырь, а в 2007 году была получена роговица глаза. Еще через год ученым удалось вырастить новое сердце, используя в качестве основы каркас старого. Для такого научного эксперимента использовалось сердце взрослой крысы, которое поместили в особенный раствор, удаливший из органа все мышечные ткани. Далее полученный каркас засеяли клетками сердечной мышцы, полученными от новорожденной крысы. Уже спустя две недели орган стал способен перекачивать кровь.

На сегодняшний день многие медики уверены, что в скором времени трансплантация уже не будет дорогостоящей операцией для избранных, для получения органа нужна будет лишь символическая плата.

Так за последние несколько лет было проведено ряд оперативных вмешательств по пересадке искусственно выращенной трахеи, на которую были нанесены собственные клеточки пациента, выделенные из костного мозга. Благодаря таким клеткам организм рецепиента не отторгает пересаженный орган, он нормально приживается и сам подстраивается под новые условия. Такая операция позволяет пациентам вновь самостоятельно дышать и говорить.

Выращивание человеческих органов для трансплантации другим методом

Еще одним современнейшим достижением науки можно назвать 3d-печать органов. Подобная чудесная методика осуществляется при помощи специальной биохимической машины. Самые первые опыты проводились на классических струйных принтерах. Учеными было выяснено, что клеточки человеческого организма имеют такой же размер, как и капли стандартных чернил. Если перевести эти данные на цифры получится размер в 10 микрон. А при биопечати девяносто процентов клеточек остаются жизнеспособными.

На сегодняшний день специалистам удалось напечатать ушные раковины, сердечные клапаны, а также сосудистые трубки. Кроме всего прочего 3d-принтер позволяет создать костные ткани, и даже кожу, подходящую для дальнейшей пересадки.

Печать органов проводится при помощи специального фоточувствительного гидрогеля, особенного порошкового наполнителя либо жидкости. Рабочий материал подают из дозатора покапельно или постоянной струей. Так создаются мягкие либо хрящевые ткани. Для получения костного импланта проводят послойное наплавление полимеров, имеющих натуральное происхождение.

Выращивание

Британские ученые вплотную занялись проблемами стоматологии, точнее ортодонтии. На сегодняшний день медики активно разрабатывают технологию восстановления утраченных зубов – при этом подразумевается, что зуб будет выращиваться самостоятельно непосредственно в ротовой полости пациента.

Поначалу стоматологи будут создавать «зачаток зуба» - используя эпителий десны и стволовые клетки. Такая манипуляция проводится в пробирке. После клетки подвергаются стимуляции особенным импульсом, который заставит их превратиться в нужный тип зуба. Затем такой зачаток, находясь в пробирке, формируется. Лишь после этого его помещают внутрь ротовой полости. Там он имплантируется и достигает нужного размера самостоятельно.

Итак, на сегодняшний день нет ни одной разновидности биологических тканей, которые бы не попробовала выращивать современная наука. Но, несмотря на достигнутые успехи, заменить искусственно выращенными аналогами пока невозможно – это дело будущего.

Народные рецепты

Народные лекарства помогут избежать необходимости пересадки органов. Они могут использоваться для лечения самых разных патологических состояний, в том числе и опасной почечной недостаточности, которая часто требует трансплантации почки.

При таком патологическом состоянии знахари советуют соединить равные доли измельченных листиков брусники, семян льна, цветков календулы и травки трехцветной фиалки. Пару столовых ложек полученного сбора заварите одним литром кипящей воды. Проварите такое средство десять минут на огне минимальной мощности, после перелейте в термос на двенадцать часов. Процеженный напиток принимайте по четверти-половинке стакана трижды на день примерно за час до трапезы.

Целесообразность применения народных средств нужно обязательно обсудить с врачом.

Екатерина, www.сайт
Google

- Уважаемые наши читатели! Пожалуйста, выделите найденную опечатку и нажмите Ctrl+Enter. Напишите нам, что там не так.
- Оставьте, пожалуйста, свой комментарий ниже! Просим Вас! Нам важно знать Ваше мнение! Спасибо! Благодарим Вас!