Меню
Бесплатно
Главная  /  Болезни  /  Оценка значимости параметров уравнения парной линейной регрессии. Оценка значимости уравнения регрессии и его коэффициентов

Оценка значимости параметров уравнения парной линейной регрессии. Оценка значимости уравнения регрессии и его коэффициентов

После того, как найдено уравнение линейной регрессии, проводится оценка значимости как уравнения в целом, так и отдельных его параметров.

Проверить значимость уравнения регрессии - значит установить, соответствует ли математическая модель, выражающая зависимость между переменными, экспериментальным данным и достаточно ли включённых в уравнение объясняющих переменных (одной или нескольких) для описания зависимой переменной.

Проверка значимости производится на основе дисперсионного анализа.

Согласно идее дисперсионного анализа, общая сумма квадратов отклонений (СКО) y от среднего значения раскладывается на две части - объясненную и необъясненную:

или, соответственно:

Здесь возможны два крайних случая: когда общая СКО в точности равна остаточной и когда общая СКО равна факторной.

В первом случае фактор х не оказывает влияния на результат, вся дисперсия y обусловлена воздействием прочих факторов, линия регрессии параллельна оси Ох и уравнение должно иметь вид.

Во втором случае прочие факторы не влияют на результат, y связан с x функционально, и остаточная СКО равна нулю.

Однако на практике в правой части присутствуют оба слагаемых. Пригодность линии регрессии для прогноза зависит от того, какая часть общей вариации y приходится на объясненную вариацию. Если объясненная СКО будет больше остаточной СКО, то уравнение регрессии статистически значимо и фактор х оказывает существенное воздействие на результат y. Это равносильно тому, что коэффициент детерминации будет приближаться к единице.

Число степеней свободы (df-degrees of freedom) - это число независимо варьируемых значений признака.

Для общей СКО требуется (n-1) независимых отклонений,

Факторная СКО имеет одну степень свободы, и

Таким образом, можем записать:

Из этого баланса определяем, что = n-2.

Разделив каждую СКО на свое число степеней свободы, получим средний квадрат отклонений, или дисперсию на одну степень свободы: - общая дисперсия, - факторная, - остаточная.

Анализ статистической значимости коэффициентов линейной регрессии

Хотя теоретические значения коэффициентов уравнения линейной зависимости предполагаются постоянными величинами, оценки а и b этих коэффициентов, получаемые в ходе построения уравнения по данным случайной выборки, являются случайными величинами. Если ошибки регрессии имеют нормальное распределение, то оценки коэффициентов также распределены нормально и могут характеризоваться своими средними значениями и дисперсией. Поэтому анализ коэффициентов начинается с расчёта этих характеристик.

Дисперсии коэффициентов рассчитываются по формулам:

Дисперсия коэффициента регрессии:

где - остаточная дисперсия на одну степень свободы.

Дисперсия параметра:

Отсюда стандартная ошибка коэффициента регрессии определяется по формуле:

Стандартная ошибка параметра определяется по формуле:

Они служат для проверки нулевых гипотез о том, что истинное значение коэффициента регрессии b или свободного члена a равно нулю: .

Альтернативная гипотеза имеет вид: .

t - статистики имеют t - распределение Стьюдента с степенями свободы. По таблицам распределения Стьюдента при определённом уровне значимости б и степенях свободы находят критическое значение.

Если, то нулевая гипотеза должна быть отклонена, коэффициенты считаются статистически значимыми.

Если, то нулевая гипотеза не может быть отклонена. (В случае, если коэффициент b статистически незначим, уравнение должно иметь вид, и это означает, что связь между признаками отсутствует. В случае, если коэффициент а статистически незначим, рекомендуется оценить новое уравнение в виде).

Интервальные оценки коэффициентов линейного уравнения регрессии:

Доверительный интервал для а: .

Доверительный интервал для b:

Это означает, что с заданной надёжностью (где - уровень значимости) истинные значения а, b находятся в указанных интервалах.

Коэффициент регрессии имеет четкую экономическую интерпретацию, поэтому доверительные границы интервала не должны содержать противоречивых результатов, например, Они не должны включать нуль.

Анализ статистической значимости уравнения в целом.

Распределение Фишера в регрессионном анализе

Оценка значимости уравнения регрессии в целом дается с помощью F- критерия Фишера. При этом выдвигается нулевая гипотеза о том, что все коэффициенты регрессии, за исключением свободного члена а, равны нулю и, следовательно, фактор х не оказывает влияния на результат y (или).

Величина F - критерия связана с коэффициентом детерминации. В случае множественной регрессии:

где m - число независимых переменных.

В случае парной регрессии формула F - статистики принимает вид:

При нахождении табличного значения F- критерия задается уровень значимости (обычно 0,05 или 0,01) и две степени свободы: - в случае множественной регрессии, - для парной регрессии.

Если, то отклоняется и делается вывод о существенности статистической связи между y и x.

Если, то вероятность уравнение регрессии считается статистически незначимым, не отклоняется.

Замечание. В парной линейной регрессии. Кроме того, поэтому. Таким образом, проверка гипотез о значимости коэффициентов регрессии и корреляции равносильна проверке гипотезы о существенности линейного уравнения регрессии.

Распределение Фишера может быть использовано не только для проверки гипотезы об одновременном равенстве нулю всех коэффициентов линейной регрессии, но и гипотезы о равенстве нулю части этих коэффициентов. Это важно при развитии линейной регрессионной модели, так как позволяет оценить обоснованность исключения отдельных переменных или их групп из числа объясняющих переменных, или же, наоборот, включения их в это число.

Пусть, например, вначале была оценена множественная линейная регрессия по п наблюдениям с т объясняющими переменными, и коэффициент детерминации равен, затем последние k переменных исключены из числа объясняющих, и по тем же данным оценено уравнение, для которого коэффициент детерминации равен (, т.к. каждая дополнительная переменная объясняет часть, пусть небольшую, вариации зависимой переменной).

Для того, чтобы проверить гипотезу об одновременном равенстве нулю всех коэффициентов при исключённых переменных, рассчитывается величина

имеющая распределение Фишера с степенями свободы.

По таблицам распределения Фишера, при заданном уровне значимости, находят. И если, то нулевая гипотеза отвергается. В таком случае исключать все k переменных из уравнения некорректно.

Аналогичные рассуждения могут быть проведены и по поводу обоснованности включения в уравнение регрессии одной или нескольких k новых объясняющих переменных.

В этом случае рассчитывается F - статистика

имеющая распределение. И если она превышает критический уровень, то включение новых переменных объясняет существенную часть необъяснённой ранее дисперсии зависимой переменной (т.е. включение новых объясняющих переменных оправдано).

Замечания. 1. Включать новые переменные целесообразно по одной.

2. Для расчёта F - статистики при рассмотрении вопроса о включении объясняющих переменных в уравнение желательно рассматривать коэффициент детерминации с поправкой на число степеней свободы.

F - статистика Фишера используется также для проверки гипотезы о совпадении уравнений регрессии для отдельных групп наблюдений.

Пусть имеются 2 выборки, содержащие, соответственно, наблюдений. Для каждой из этих выборок оценено уравнение регрессии вида. Пусть СКО от линии регрессии (т.е.) равны для них, соответственно, .

Проверяется нулевая гипотеза: о том, что все соответствующие коэффициенты этих уравнений равны друг другу, т.е. уравнение регрессии для этих выборок одно и то же.

Пусть оценено уравнение регрессии того же вида сразу для всех наблюдений, и СКО.

Тогда рассчитывается F - статистика по формуле:

Она имеет распределение Фишера с степенями свободы. F - статистика будет близкой к нулю, если уравнение для обеих выборок одинаково, т.к. в этом случае. Т.е. если, то нулевая гипотеза принимается.

Если же, то нулевая гипотеза отвергается, и единое уравнение регрессии построить нельзя.


Оценка статистической значимости параметров и уравнения в целом – это обязательная процедура, которая позволяет сделать ввод о возможности использования построенного уравнения связи для принятия управленческих решений и прогнозирования.

Оценка статистической значимости уравнения регрессии осуществляется с использованием F-критерия Фишера, который представляет собой отношение факторной и остаточных дисперсий, рассчитанных на одну степень свободы.

Факторная дисперсия – объясненная часть вариации признака-результата, то есть обусловленная вариацией тех факторов, которые включены в анализ (в уравнение):

где k – число факторов в уравнении регрессии (число степеней свободы факторной дисперсии); - среднее значение зависимой переменной; - теоретическое (рассчитанное по уравнению регрессии) значение зависимой переменной у i – й единицы совокупности.

Остаточная дисперсия – необъясненная часть вариации признака-результата, то есть обусловленная вариацией прочих факторов, не включенных в анализ.

= , (71)

где - фактическое значение зависимой переменной у i – й единицы совокупности; n-k-1 – число степеней свободы остаточной дисперсии; n – объем совокупности.

Сумма факторной и остаточной дисперсий, как отмечалось выше, есть общая дисперсия признака-результата.

F-критерия Фишера рассчитывается по следующей формуле:

F-критерий Фишера – величина, отражающая соотношение объясненной и необъясненной дисперсий, позволяет ответить на вопрос: объясняют ли включенные в анализ факторы статистическую значимую часть вариации признака-результата. F-критерий Фишера табулирован (входом в таблицу является число степеней свободы факторной и остаточной дисперсий). Если , то уравнение регрессии признается статистически значимым и, соответственно, статистически значим коэффициент детерминации. В противном случае, уравнение – статистически не значимо, т.е. не объясняет существенной части вариации признака-результата.

Оценка статистической значимости параметров уравнения осуществляется на основе t-статистики, которая рассчитывается как отношение модуля параметров уравнения регрессии к их стандартным ошибкам ():

, где ; (73)

, где . (74)

В любой статистической программе расчет параметров всегда сопровождается расчетом значений их стандартных (среднеквадратических) ошибок и t-статистики. Параметр признаются статистически значимым, если фактическое значение t-статистики больше табличного.

Оценка параметров на основе t-статистики, по существу, является проверкой нулевой гипотезы о равенстве генеральных параметров нулю (H 0: =0; H 0: =0;), то есть о не значимости параметров уравнения регрессии. Уровень значимости принятия нулевых гипотез = 1-0,95=0,05 (0,95 – уровень вероятности, как правило, устанавливаемый в экономических расчетах). Если расчетный уровень значимости меньше 0,05 , то нулевая гипотеза отвергается и принимается альтернативная - о статистической значимости параметра.

Проводя оценку статистической значимости уравнения регрессии и его параметров, мы можем получить различное сочетание результатов.

· Уравнение по F-критерию статистически значимо и все параметры уравнения по t-статистике тоже статистически значимы. Данное уравнение может быть использовано как для принятия управленческих решений (на какие факторы следует воздействовать, чтобы получить желаемый результат), так и для прогнозирования поведения признака-результата при тех или иных значениях факторов.

· По F-критерию уравнение статистически значимо, но незначимы отдельные параметры уравнения. Уравнение может быть использовано для принятия управленческих решений (касающихся тех факторов, по которым получено подтверждение статистической значимости их влияния), но уравнение не может быть использовано для прогнозирования.

· Уравнение по F-критерию статистически незначимо. Уравнение не может быть использовано. Следует продолжить поиск значимых признаков-факторов или аналитической формы связи аргументов и отклика.

Если подтверждена статистическая значимость уравнения и его параметров, то может быть реализован, так называемый, точечный прогноз, т.е. рассчитывается вероятное значение признака-результата (y) при тех или иных значениях факторов (x). Совершенно очевидно, что прогнозное значение зависимой переменной не будет совпадать с фактическим ее значением. Это связано, прежде всего, с самой сутью корреляционной зависимости. Одновременно на результат воздействует множество факторов, из которых только часть может быть учтена в уравнении связи. Кроме того, может быть неверно выбрана форма связи результата и факторов (тип уравнения регрессии). Между фактическими значениями признака-результата и его теоретическими (прогнозными) значениями всегда существует различие (). Графически эта ситуация выражается в том, что не все точки поля корреляции лежат на линии регрессии. Лишь при функциональной связи линия регрессии пройдет через все точки поля корреляции. Разность между фактическими и теоретическими значениями результативного признака называют отклонениями или ошибками, или остатками. На основе этих величин и рассчитывается остаточная дисперсия, являющаяся оценкой среднеквадратической ошибки уравнения регрессии. Величина стандартной ошибки используется для расчета доверительных интервалов прогнозного значения признака-результата (Y).

100 р бонус за первый заказ

Выберите тип работы Дипломная работа Курсовая работа Реферат Магистерская диссертация Отчёт по практике Статья Доклад Рецензия Контрольная работа Монография Решение задач Бизнес-план Ответы на вопросы Творческая работа Эссе Чертёж Сочинения Перевод Презентации Набор текста Другое Повышение уникальности текста Кандидатская диссертация Лабораторная работа Помощь on-line

Узнать цену

После того как найдено уравнение линейной регрессии, проводится оценка значимости как уравнения в целом, так и отдельных его параметров . Проверить значимость уравнения регрессии – значит установить, соответствует ли математическая модель, выражающая зависимость между переменными, экспериментальным данным и достаточно ли включенных в уравнение объясняющих переменных (одной или нескольких) для описания зависимой переменной. Чтобы иметь общее суждение о качестве модели из относительных отклонений по каждому наблюдению, определяют среднюю ошибку аппроксимации : Средняя ошибка аппроксимации не должна превышать 8–10%.

Оценка значимости уравнения регрессии в целом производится на основе F -критерия Фишера , которому предшествует дисперсионный анализ. Согласно основной идее дисперсионного анализа, общая сумма квадратов отклонений переменной y от среднего значения y раскладывается на две части – «объясненную» и «необъясненную»: где – общая сумма квадратов отклонений; – сумма квадратов отклонений, объясненная регрессией (или факторная сумма квадратов отклонений); – остаточная сумма квадратов отклонений, характеризующая влияние неучтенных в модели факторов. Определение дисперсии на одну степень свободы приводит дисперсии к сравнимому виду. Сопоставляя факторную и остаточную дисперсии в расчете на одну степень свободы, получим величину F -критерия Фишера: Фактическое значение F -критерия Фишера сравнивается с

табличным значением F табл(a; k 1; k 2) при уровне значимости a и степенях свободы k 1 = m и k 2= n -m -1.При этом, если фактическое значение F - критерия больше табличного, то признается статистическая значимость уравнения в целом.

Для парной линейной регрессии m =1, поэтому

Величина F -критерия связана с коэффициентом детерминации R2 ее можно рассчитать по следующей формуле:

В парной линейной регрессии оценивается значимость не только уравнения в целом, но и отдельных его параметров . С этой целью по каждому из параметров определяется его стандартная ошибка: m b и m a . Стандартная ошибка коэффициента регрессии определяется по формуле:, где

Величина стандартной ошибки совместно с t –распределением Стьюдента при n -2 степенях свободы применяется для проверки существенности коэффициента регрессии и для расчета его доверительного интервала. Для оценки существенности коэффициента регрессии его величина сравнивается с его стандартной ошибкой, т.е. определяется фактическое значение t -критерия Стьюдента: которое затем сравнивается с табличным значением при определенном уровне значимости a и числе степеней свободы (n-2). Доверительный интервал для коэффициента регрессии определяется как b ± t табл ×mb . Поскольку знак коэффициента регрессии указывает на рост результативного признака y при увеличении признака-фактора x (b >0), уменьшение результативного признака при увеличении признака-фактора (b <0) или его независимость от независимой переменной (b =0), то границы доверительного интервала для коэффициента регрессии не должны содержать противоречивых результатов, например, -1,5 £ b £ 0,8. Такого рода запись указывает, что истинное значение коэффициента регрессии одновременно содержит положительные и отрицательные величины и даже ноль, чего не может быть.

Стандартная ошибка параметра a определяется по формуле: Процедура оценивания существенности данного параметра не отличается от рассмотренной выше для коэффициента регрессии. Вычисляется t -критерий: , его величина сравнивается с табличным значением при n - 2 степенях свободы.


В социально-экономических исследованиях часто приходится работать в условиях ограниченной совокупности, либо с выборочными данными. Поэтому после математических параметров уравнение регрессии необходимо оценить их и уравнение в целом на статистическую значимость, т.е. необходимо убедиться, что полученное уравнение и его параметры сформированы под влиянием неслучайных факторов.

Прежде всего, оценивается статистическая значимость уравнения в целом. Оценка, как правило, проводится с использованием F-критерия Фишера. Расчет F-критерия базируется на правиле сложения дисперсий. А именно, общего дисперсионного признака-результата = дисперсия факторная + дисперсия остаточная.

Фактическая цена

Теоретическая цена
Построив уравнение регрессии можно рассчитать теоретическое значение признака-результата, т.е. рассчитанные по уравнению регрессии с учетом его параметров.

Эти значения будут характеризовать признак-результат, сформировавшийся под влиянием факторов включенных в анализ.

Между фактическими значениями признака-результата и рассчитанными на основе уравнения регрессии всегда существуют расхождения (остатки), обусловленные влиянием прочих факторов, не включенных в анализ.

Разность между теоретическими и фактическими значениями признака-результата называется остатками. Общая вариация признака-результата:

Вариация по признаку-результату, обусловленная вариацией признаков факторов, включенных в анализ оценивается через сопоставления теоретических значений резул. признака и его средних значений. Остаточная вариация через сопоставление теоретических и фактических значений результатирующего признака. Общая дисперсия , остаточная и фактическая имеют разное число степеней свободы.

Общая , п - число единиц в изучаемой совокупности

Фактическая , п - число факторов, включенных в анализ

Остаточная

F-критерий Фишера рассчитывается как отношение к , причем рассчитаны на одну степень свободы.

Использование F-критерия Фишера в качестве оценки статистической значимости уравнения регрессии очень логично. - это результат. признака, обусловленная факторами включенными в анализ, т.е. это доля объясненной результат. признака. - это (вариация) признака результата обусловленная факторами влияние которых не учитывается, т.е. не включенными в анализ.

Т.о. F-критерий призван оценить значимое превышение над . Если несущественно ниже , а тем более, если оно превышает , следовательно, в анализ включены не те факторы, которые действительно влияют на признак-результат.

F-критерий Фишера табулирован, фактическое значение сравнивается с табличным. Если , то уравнение регрессии признается статистически значимым. Если наоборот – уравнение статистически не значимо и не может использоваться на практике, значимость уравнения в целом говорит о статистической значимости показателей корелляции.

После оценки уравнения в целом необходимо оценить статистическую значимость параметров уравнения. Эта оценка осуществляется с использованием t-статистики Стьюдента. t-статистика рассчитывается как отношение параметров уравнения (по модулю) к их стандартной средней квадратической ошибке. Если оценивается однофакторная модель, то рассчитывается 2 статистики.

Во всех компьютерных программах расчет стандартной ошибки и t-статистики для параметров проводится с расчетом самих параметров. T-статистика табулирована. Если значение , то параметр признается статистически значимым, т.е. сформированным под влиянием неслучайных факторов.

Расчет t-статистики по существу означает проверку нулевой гипотезы о незначимости параметра, т.е. равенстве его нулю. При однофакторной модели оценивается 2 гипотезы: и

Уровень значимости принятия нулевой гипотезы зависит от уровня принятой доверительной вероятности. Так если исследователь задает уровень вероятности 95%, уровень значимости принятия будет рассчитываться , следовательно, если уровень значимости ≥ 0,05, то принимается и параметры считаются статистически незначимыми. Если , то отвергается и принимается альтернатива: и .

В пакетах прикладных программ по статистике также приводится уровень значимости принятия нулевых гипотез. Оценка значимости уравнения регрессии и его параметров может дать следующие результаты:

Во-первых, уравнение в целом значимо(по F-критерию) и также статистически значимы все параметры уравнения. Это означает, что полученное уравнение может быть использовано как для принятия управленческих решений, так и для прогнозирования.

Во-вторых, по F-критерию уравнение статистически значимо, но не значим хотя бы один из параметров уравнения. Уравнение может быть использовано для принятия управленческих решений относительно анализируемых факторов, но не может быть использовано для прогнозирования.

В-третьих, уравнение статистически не значимо, либо по F- критерию уравнение значимо, но не значимы все параметры полученного уравнения. Уравнение не может быть использовано не для каких целей.

Чтобы уравнение регрессии можно было признать моделью связи между признаком-результатом и признаками-факторами необходимо чтобы в него были включены все важнейшие факторы, определяющие результат, чтобы содержательная интерпретация параметров уравнения соответствовала теоретически обоснованным связям в изучаемом явлении. Коэффициент детерминации R 2 должен быть > 0,5.

При построении множественного уравнения регрессии целесообразно осуществить оценку по так называемому скорректированному коэффициенту детерминации (R 2). Величина R 2 (как и корелляции) возрастает при увеличение числа факторов включенных в анализ. Особенно завышается значение коэф-в в условиях небольших совокупностей. С целью погасить отрицательное влияние R 2 и корелляции корректируют с учетом числа степеней свободы, т.е. числа свободно варьирующих элементов при включении определенных факторов.

Скорректированный коэф-т детерминации

п –объем совокупности/число наблюдений

k – число факторов включенных в анализ

п-1 – число степеней свободы

(1-R 2) - величина остатка/ необъясненной дисперсии результативного признака

Всегда меньше R 2 . на основе можно сравнивать оценки уравнений с разным числом анализируемых факторов.

34. Задачи изучения динамических рядов.

Ряды динамики называют временными рядами или динамическими рядами. Динамический ряд – это упорядоченная во времени последовательность показателей, характеризующих то или иное явление (объем ВВП с 90 по 98 гг). Целью изучения рядов динамики является выявление закономерности развития изучаемого явления (основной тенденции) и прогнозирование на этой основе. Из определения РД следует, что любой ряд состоит из двух элементов: время t и уровень ряда (те конкретные значения показателя, на основе которого построен ДРяд). ДРяды могут быть 1)моментными – ряды, показатели которых фиксируются на момент времени, на определенную дату, 2)интервальными – ряды, показатели которого получают за какой-то период времени (1.численность населения СПб, 2.объем ВВП за период). Разделение рядов на моментные и интервальные необходимо, поскольку это определяет специфику расчета некоторых показателей ДРядов. Суммирование уровней интервальных рядов дает содержательно интерпретируемый результат, что нельзя сказать о суммировании уровней моментных рядов, поскольку последние содержат повторный счет. Важнейшей проблемой в анализе рядов динамики является проблема сопоставимости уровней ряда. Это понятие очень разноплановое. Уровни должны быть сопоставимы по методам расчета и по территории и охвату единиц совокупности. Если ДРяд строится в стоимостных показателях, то все уровни должны быть представлены или рассчитаны в сопоставимых ценах. При построении интервальных рядов уровни должны характеризовать одинаковые отрезки времени. При построении моментных РядовД уровни должны фиксироваться на одну и ту же дату. ДРяды могут быть полными и неполными. Неполные ряды используются в официальных изданиях (1980,1985,1990,1995,1996,1997,1998,1999…). Комплексный анализ РД включает изучение следующих моментов:

1. расчет показателей изменения уровней РД

2. расчет средних показателей РД

3. выявление основной тенденции ряда, построение трендовых моделей

4. оценка автокорреляции в РД, построение авторегрессионных моделей

5. корреляция РД (изучение связей м/у ДРядами)

6. прогнозирование РД.

35. Показателей изменения уровней временных рядов .

В общем виде РядД может быть представлен:

у – уровень ДР, t – момент или период времени к которому относится уровень (показатель), n – длина ДРяда (число периодов). при изучении ряда динамики рассчитывают следующие показатели: 1. абсолютный прирост, 2. коэффициент роста (темп роста), 3. ускорение, 4. коэффициент прироста (темп прироста), 5. абсолютное значение 1 % прироста. Рассчитываемые показатели могут быть: 1. цепные – получают путем сопоставления каждого уровня ряда с непосредственно предшествующим, 2. базисные – получают путем сопоставления с уровнем, выбранным за базу сравнения (если специально не оговаривается, за базу берется 1ый уровень ряда). 1. Цепные абсолютные приросты: . Показывает на сколько больше или меньше . Цепные абсолютные приросты называют показателями скорости изменения уровней динамического ряда. Базисный абсолютный прирост : . Если уровни ряда представляют собой относительные показатели, выраженные в %-ах, то абсолютный прирост выражается в пунктах изменения. 2. коэффициент роста (темпы роста): Рассчитывается как отношение уровней ряда к непосредственно предшествующим (цепные коэффициенты роста), либо к уровню, принятому за базу сравнения (базисные коэффициенты роста): . Характеризует во сколько раз каждый уровень ряда > или < предшествующего или базисного. На основе коэффициентов роста рассчитываются темпы роста. Это коэффициенты роста, выраженные в %ах: 3. на основе абсолютных приростов рассчитывают показатель – ускорение абсолютных приростов : . Ускорение – абсолютный прирост абсолютных приростов. Оценивает как изменяются сами приросты, они стабильны или принимают ускорение (возрастают). 4. темп прироста – это отношение прироста к базе сравнения. Выражается в %-ах: ; . Темп прироста – это темп роста минус 100%. Показывает на сколько % данный уровень ряда > или < предшествующего либо базисного. 5. абсолютное значение 1% прироста. Рассчитывается как отношение абсолютного прироста к темпу прироста, т.е.: - сотая доля предыдущего уровня. Все эти показатели рассчитываются для оценки степени изменения уровней ряда. Цепные коэффициенты и темпы роста называются показателями интенсивности изменения уровней ДРядов.

2. Расчет средних показателей РД Рассчитывают средние уровни рядов, средние абсолютные приросты, средние темпы роста и средние темпы прироста. Средние показатели рассчитываются с целью обобщения информации и возможности сравнивать уровни и показатели их изменения по различным рядам. 1. средний уровень ряда а) для интервальных временных рядов рассчитывается по средней арифметической простой: , где n – число уровней во временном ряду; б) для моментных рядов средний уровень рассчитывается по специфической формуле, которая называется средней хронологической: . 2. средний абсолютный прирост рассчитывается на основе цепных абсолютных приростов по средней арифметической простой:

. 3. Средний коэффициент роста рассчитывается на основе цепных коэффициентов роста по формуле средней геометрической: . При комментарии средних показателей ДРядов необходимо указывать 2 момента: период, который характеризует анализируемый показатель и временной интервал, за который построен ДРяд. 4. Средний темп роста : . 5. средний темп прироста : .

Проверить значимость параметров уравнения регрессии можно, используя t-статистику .

Задание:
По группе предприятий, выпускающих один и тот же вид продукции, рассматриваются функции издержек:
y = α + βx;
y = α x β ;
y = α β x ;
y = α + β / x;
где y – затраты на производство, тыс. д. е.
x – выпуск продукции, тыс. ед.

Требуется:
1. Построить уравнения парной регрессии y от x:

  • линейное;
  • степенное;
  • показательное;
  • равносторонней гиперболы.
2. Рассчитать линейный коэффициент парной корреляции и коэффициент детерминации . Сделать выводы.
3. Оценить статистическую значимость уравнения регрессии в целом.
4. Оценить статистическую значимость параметров регрессии и корреляции.
5. Выполнить прогноз затрат на производство при прогнозном выпуске продукции, составляющем 195 % от среднего уровня.
6. Оценить точность прогноза, рассчитать ошибку прогноза и его доверительный интервал.
7. Оценить модель через среднюю ошибку аппроксимации.

Решение :

1. Уравнение имеет вид y = α + βx
1. Параметры уравнения регрессии.
Средние значения

Дисперсия

Среднеквадратическое отклонение

Коэффициент корреляции

Связь между признаком Y фактором X сильная и прямая
Уравнение регрессии

Коэффициент детерминации
R 2 = 0.94 2 = 0.89, т.е. в 88.9774 % случаев изменения х приводят к изменению y. Другими словами - точность подбора уравнения регрессии - высокая

x y x 2 y 2 x ∙ y y(x) (y-y cp) 2 (y-y(x)) 2 (x-x p) 2
78 133 6084 17689 10374 142.16 115.98 83.83 1
82 148 6724 21904 12136 148.61 17.9 0.37 9
87 134 7569 17956 11658 156.68 95.44 514.26 64
79 154 6241 23716 12166 143.77 104.67 104.67 0
89 162 7921 26244 14418 159.9 332.36 4.39 100
106 195 11236 38025 20670 187.33 2624.59 58.76 729
67 139 4489 19321 9313 124.41 22.75 212.95 144
88 158 7744 24964 13904 158.29 202.51 0.08 81
73 152 5329 23104 11096 134.09 67.75 320.84 36
87 162 7569 26244 14094 156.68 332.36 28.33 64
76 159 5776 25281 12084 138.93 231.98 402.86 9
115 173 13225 29929 19895 201.86 854.44 832.66 1296
0 0 0 16.3 20669.59 265.73 6241
1027 1869 89907 294377 161808 1869 25672.31 2829.74 8774

Примечание: значения y(x) находятся из полученного уравнения регрессии:
y(1) = 4.01*1 + 99.18 = 103.19
y(2) = 4.01*2 + 99.18 = 107.2
... ... ...

2. Оценка параметров уравнения регрессии
Значимость коэффициента корреляции

По таблице Стьюдента находим Tтабл
T табл (n-m-1;α/2) = (11;0.05/2) = 1.796
Поскольку Tнабл > Tтабл, то отклоняем гипотезу о равенстве 0 коэффициента корреляции. Другими словами, коэффициента корреляции статистически - значим.

Анализ точности определения оценок коэффициентов регрессии





S a = 0.1712
Доверительные интервалы для зависимой переменной

Рассчитаем границы интервала, в котором будет сосредоточено 95% возможных значений Y при неограниченно большом числе наблюдений и X = 1
(-20.41;56.24)
Проверка гипотез относительно коэффициентов линейного уравнения регрессии
1) t-статистика


Статистическая значимость коэффициента регрессии a подтверждается

Статистическая значимость коэффициента регрессии b не подтверждается
Доверительный интервал для коэффициентов уравнения регрессии
Определим доверительные интервалы коэффициентов регрессии, которые с надежность 95% будут следующими:
(a - t S a ; a + t S a)
(1.306;1.921)
(b - t b S b ; b + t b S b)
(-9.2733;41.876)
где t = 1.796
2) F-статистики


Fkp = 4.84
Поскольку F > Fkp, то коэффициент детерминации статистически значим