Меню
Бесплатно
Главная  /  Медикаменты  /  Геометрическая прогрессия формулы b1. Будьте всегда в настроении

Геометрическая прогрессия формулы b1. Будьте всегда в настроении

Рассмотрим некоторый ряд.

7 28 112 448 1792...

Совершенно ясно видно, что значение любого его элемента больше предыдущего ровно в четыре раза. Значит, данный ряд является прогрессией.

Геометрической прогрессиейименуется бесконечная последовательность чисел, главной особенностью которой является то, что следующее число получается из предыдущего посредством умножения на какое-то определенное число. Это выражается следующей формулой.

a z +1 =a z ·q, где z - номер выбранного элемента.

Соответственно, z ∈ N.

Период, когда в школе изучается геометрическая прогрессия - 9 класс. Примеры помогут разобраться в понятии:

0.25 0.125 0.0625...

Исходя из этой формулы, знаменатель прогрессии возможно найти следующим образом:

Ни q, ни b z не могут равняться нулю. Так же каждый из элементов прогрессии не должен равняться нулю.

Соответственно, чтобы узнать следующее число ряда, нужно умножить последнее на q.

Чтобы задать данную прогрессию, необходимо указать первый ее элемент и знаменатель. После этого возможно нахождение любого из последующих членов и их суммы.

Разновидности

В зависимости от q и a 1, данная прогрессия разделяется на несколько видов:

  • Если и a 1 , и q больше единицы, то такая последовательность - возрастающая с каждым следующим элементом геометрическая прогрессия. Пример таковой представлен далее.

Пример: a 1 =3, q=2 - оба параметра больше единицы.

Тогда числовая последовательность может быть записана так:

3 6 12 24 48 ...

  • Если |q| меньше единицы, то есть, умножение на него эквивалентно делению, то прогрессия с подобными условиями - убывающая геометрическая прогрессия. Пример таковой представлен далее.

Пример: a 1 =6, q=1/3 - a 1 больше единицы, q - меньше.

Тогда числовую последовательность можно записать таким образом:

6 2 2/3 ... - любой элемент больше элемента, следующего за ним, в 3 раза.

  • Знакопеременная. Если q<0, то знаки у чисел последовательности постоянно чередуются вне зависимости от a 1 , а элементы ни возрастают, ни убывают.

Пример: a 1 = -3 , q = -2 - оба параметра меньше нуля.

Тогда числовую последовательность можно записать так:

3, 6, -12, 24,...

Формулы

Для удобного использования геометрических прогрессий существует множество формул:

  • Формула z-го члена. Позволяет рассчитать элемент, стоящий под конкретным номером без расчета предыдущих чисел.

Пример: q = 3, a 1 = 4. Требуется посчитать четвертый элемент прогрессии.

Решение: a 4 = 4 · 3 4-1 = 4 · 3 3 = 4 · 27 = 108.

  • Сумма первых элементов, чье количество равно z . Позволяет рассчитать сумму всех элементов последовательности до a z включительно.

Так как (1- q ) стоит в знаменателе, то (1 - q) ≠ 0, следовательно, q не равно 1.

Замечание: если бы q=1, то прогрессия представляла бы собой ряд из бесконечно повторяющегося числа.

Сумма геометрической прогрессии, примеры: a 1 = 2, q = -2. Посчитать S 5 .

Решение: S 5 = 22 - расчет по формуле.

  • Сумма, если | q | < 1 и если z стремится к бесконечности.

Пример: a 1 = 2 , q = 0.5. Найти сумму.

Решение: S z = 2 · = 4

S z = 2 + 1 + 0.5 + 0.25 + 0.125 + 0.0625 = 3.9375 4

Некоторые свойства:

  • Характеристическое свойство. Если следующее условие выполняется для любого z , то заданный числовой ряд - геометрическая прогрессия:

a z 2 = a z -1 · a z+1

  • Так же квадрат любого числа геометрической прогрессии находится при помощи сложения квадратов двух других любых чисел в заданном ряду, если они равноудалены от этого элемента.

a z 2 = a z - t 2 + a z + t 2 , где t - расстояние между этими числами.

  • Элементы различаются в q раз.
  • Логарифмы элементов прогрессии так же образуют прогрессию, но уже арифметическую, то есть каждый из них больше предыдущего на определенное число.

Примеры некоторых классических задач

Чтобы лучше понять, что такое геометрическая прогрессия, примеры с решением для 9 класса могут помочь.

  • Условия: a 1 = 3, a 3 = 48. Найти q .

Решение: каждый последующий элемент больше предыдущего в q раз. Необходимо выразить одни элементы через другие с помощью знаменателя.

Следовательно, a 3 = q 2 · a 1

При подстановке q = 4

  • Условия: a 2 = 6, a 3 = 12. Рассчитать S 6 .

Решение: Для этого достаточно найти q, первый элемент и подставить в формулу.

a 3 = q · a 2 , следовательно, q = 2

a 2 = q · a 1 , поэтому a 1 = 3

S 6 = 189

  • · a 1 = 10, q = -2. Найти четвертый элемент прогрессии.

Решение: для этого достаточно выразить четвертый элемент через первый и через знаменатель.

a 4 = q 3 · a 1 = -80

Пример применения:

  • Клиент банка совершил вклад на сумму 10000 рублей, по условиям которого каждый год клиенту к основной сумме будут прибавляться 6% от нее же. Сколько средств будет на счету через 4 года?

Решение: Изначальная сумма равна 10 тысячам рублей. Значит, через год после вложения на счету будет сумма, равная 10000 + 10000· 0.06 = 10000 · 1.06

Соответственно, сумма на счете еще через один год будет выражаться следующим образом:

(10000 · 1.06) · 0.06 + 10000 · 1.06 = 1.06 · 1.06 · 10000

То есть с каждым годом сумма увеличивается в 1.06 раз. Значит, чтобы найти количество средств на счете через 4 года, достаточно найти четвертый элемент прогрессии, которая задана первым элементом, равным 10 тысячам, и знаменателем, равным 1.06.

S = 1.06·1.06·1.06·1.06·10000 = 12625

Примеры задач на вычисление суммы:

В различных задачах используется геометрическая прогрессия. Пример на нахождение суммы может быть задан следующим образом:

a 1 = 4, q = 2, рассчитать S 5 .

Решение: все необходимые для расчета данные известны, нужно просто подставить их в формулу.

S 5 = 124

  • a 2 = 6, a 3 = 18. Рассчитать сумму первых шести элементов.

Решение:

В геом. прогрессии каждый следующий элемент больше предыдущего в q раз, то есть для вычисления суммы необходимо знать элемент a 1 и знаменатель q .

a 2 · q = a 3

q = 3

Аналогичным образом требуется найти a 1 , зная a 2 и q .

a 1 · q = a 2

a 1 = 2

S 6 = 728.

Формула n-го члена геометрической прогрессии – штука очень простая. Как по смыслу, так и по общему виду. Но задачки на формулу n-го члена встречаются всякие – от совсем примитивных до вполне себе серьёзных. И в процессе нашего знакомства мы обязательно рассмотрим и те и другие. Ну что, знакомимся?)

Итак, для начала собственно сама формула n

Вот она:

b n = b 1 · q n -1

Формула как формула, ничего сверхъестественного. Выглядит даже проще и компактнее, чем аналогичная формула для . Смысл формулы тоже прост, как валенок.

Эта формула позволяет находить ЛЮБОЙ член геометрической прогрессии ПО ЕГО НОМЕРУ " n ".

Как вы видите, по смыслу полная аналогия с арифметической прогрессией. Знаем номер n – можем посчитать и член, стоящий под этим номером. Какой хотим. Не умножая последовательно на "q" много-много раз. Вот и весь смысл.)

Я понимаю, что на данном уровне работы с прогрессиями все входящие в формулу величины вам уже должны быть понятны, но считаю своим долгом всё-таки расшифровать каждую. На всякий случай.

Итак, поехали:

b 1 первый член геометрической прогрессии;

q – ;

n – номер члена;

b n энный (n -й) член геометрической прогрессии.

Эта формулка связывает четыре главных параметра любой геометрической прогрессии – b n , b 1 , q и n . И вокруг этих четырёх ключевых фигур и вертятся все-все задачки по прогрессии.

"А как она выводится?" – слышу любопытный вопрос… Элементарно! Смотрите!

Чему равен второй член прогрессии? Не вопрос! Прямо по пишем:

b 2 = b 1 ·q

А третий член? Тоже не проблема! Второй член помножаем ещё раз на q .

Вот так:

B 3 = b 2 ·q

Вспомним теперь, что второй член, в свою очередь, у нас равен b 1 ·q и подставим это выражение в наше равенство:

B 3 = b 2 ·q = (b 1 ·q)·q = b 1 ·q·q = b 1 ·q 2

Получаем:

B 3 = b 1 ·q 2

А теперь прочитаем нашу запись по-русски: третий член равен первому члену, умноженному на q во второй степени. Улавливаете? Пока нет? Хорошо, ещё один шаг.

Чему равен четвёртый член? Всё то же самое! Умножаем предыдущий (т.е. третий член) на q:

B 4 = b 3 ·q = (b 1 ·q 2)·q = b 1 ·q 2 ·q = b 1 ·q 3

Итого:

B 4 = b 1 ·q 3

И снова переводим на русский язык: четвёртый член равен первому члену, умноженному на q в третьей степени.

И так далее. Ну и как? Уловили закономерность? Да! Для любого члена с любым номером количество одинаковых множителей q (т.е. степень знаменателя) всегда будет на единичку меньше, чем номер искомого члена n .

Стало быть, наша формула будет, без вариантов:

b n = b 1 · q n -1

Вот и все дела.)

Ну что, порешаем задачки, наверное?)

Решение задач на формулу n -го члена геометрической прогрессии.

Начнём, как обычно, с прямого применения формулы. Вот типичная задачка:

В геометрической прогрессии известно, что b 1 = 512 и q = -1/2. Найдите десятый член прогрессии.

Конечно, эту задачку можно вообще безо всяких формул решить. Прямо по смыслу геометрической прогрессии. Но нам ведь с формулой n-го члена размяться нужно, правда? Вот и разминаемся.

Наши данные для применения формулы следующие.

Известен первый член. Это 512.

b 1 = 512.

Известен также знаменатель прогрессии: q = -1/2.

Остаётся только сообразить, чему равен номер члена n. Не вопрос! Нас интересует десятый член? Вот и подставляем в общую формулу десятку вместо n.

И аккуратно считаем арифметику:

Ответ: -1

Как видим, десятый член прогрессии оказался с минусом. Ничего удивительного: знаменатель прогрессии у нас -1/2, т.е. отрицательное число. А это говорит нам о том, что знаки у нашей прогрессии чередуются, да.)

Здесь всё просто. А вот похожая задачка, но немного посложнее в плане вычислений.

В геометрической прогрессии известно, что:

b 1 = 3

Найдите тринадцатый член прогрессии.

Всё то же самое, только в этот раз знаменатель прогрессии – иррациональный . Корень из двух. Ну и ничего страшного. Формула – штука универсальная, с любыми числами справляется.

Работаем прямо по формуле:

Формула, конечно, сработала как надо, но… вот тут некоторые и зависнут. Что дальше делать с корнем? Как возвести корень в двенадцатую степень?

Как-как… Надо понимать, что любая формула, конечно, дело хорошее, но знание всей предыдущей математики при этом не отменяется! Как возвести? Да свойства степеней вспомнить! Превратим корень в степень с дробным показателем и – по формуле возведения степени в степень.

Вот так:

Ответ: 192

И все дела.)

В чём состоит основная трудность при прямом применении формулы n-го члена? Да! Основная трудность – это работа со степенями! А именно – возведение в степень отрицательных чисел, дробей, корней и тому подобных конструкций. Так что те, у кого с этим проблемы, настоятельная просьба повторить степени и их свойства! Иначе и в этой теме будете тормозить, да…)

А теперь порешаем типовые задачки на поиск одного из элементов формулы , если даны все остальные. Для успешного решения таких задач рецепт един и прост до ужаса – пишем формулу n -го члена в общем виде! Прямо в тетрадке рядышком с условием. А затем из условия соображаем, что нам дано, а чего не хватает. И выражаем из формулы искомую величину. Всё!

Например, такая безобидная задачка.

Пятый член геометрической прогрессии со знаменателем 3 равен 567. Найдите первый член этой прогрессии.

Ничего сложного. Работаем прямо по заклинанию.

Пишем формулу n-го члена!

b n = b 1 · q n -1

Что нам дано? Во-первых, дан знаменатель прогрессии: q = 3.

Кроме того, нам дан пятый член : b 5 = 567 .

Всё? Нет! Ещё нам дан номер n! Это – пятёрка: n = 5.

Надеюсь, вы уже понимаете, что в записи b 5 = 567 скрыты сразу два параметра – это сам пятый член (567) и его номер (5). В аналогичном уроке по я об этом уже говорил, но и здесь считаю не лишним напомнить.)

Вот теперь подставляем наши данные в формулу:

567 = b 1 ·3 5-1

Считаем арифметику, упрощаем и получаем простенькое линейное уравнение:

81 b 1 = 567

Решаем и получаем:

b 1 = 7

Как вы видите, с поиском первого члена проблем никаких. А вот при поиске знаменателя q и номера n могут встречаться и сюрпризы. И к ним (к сюрпризам) тоже надо быть готовым, да.)

Например, такая задачка:

Пятый член геометрической прогрессии с положительным знаменателем равен 162, а первый член этой прогрессии равен 2. Найдите знаменатель прогрессии.

В этот раз нам даны первый и пятый члены, а найти просят знаменатель прогрессии. Вот и приступаем.

Пишем формулу n -го члена!

b n = b 1 · q n -1

Наши исходные данные будут следующими:

b 5 = 162

b 1 = 2

n = 5

Не хватает значения q . Не вопрос! Сейчас найдём.) Подставляем в формулу всё что нам известно.

Получаем:

162 = 2· q 5-1

2 q 4 = 162

q 4 = 81

Простенькое уравнение четвёртой степени. А вот сейчас – аккуратно! На данном этапе решения многие ученики сразу же радостно извлекают корень (четвёртой степени) и получают ответ q =3 .

Вот так:

q 4 = 81

q = 3

Но вообще-то, это недоделанный ответ. Точнее, неполный. Почему? Дело в том, что ответ q = -3 тоже подходит: (-3) 4 тоже будет 81!

Всё из-за того, что степенное уравнение x n = a всегда имеет два противоположных корня при чётном n . С плюсом и с минусом:

Оба подходят.

Например, решая (т.е. второй степени)

x 2 = 9

Вы же почему-то не удивляетесь появлению двух корней x=±3? Вот и тут то же самое. И с любой другой чётной степенью (четвёртой, шестой, десятой и т.д.) будет так же. Подробности – в теме про

Поэтому правильное решение будет таким:

q 4 = 81

q = ±3

Хорошо, со знаками разобрались. Какой же из них правильный – плюс или минус? Что ж, читаем ещё раз условие задачи в поисках дополнительной информации. Её, конечно, может и не быть, но в данной задаче такая информация имеется. У нас в условии прямым текстом сказано, что дана прогрессия с положительным знаменателем.

Поэтому ответ очевиден:

q = 3

Здесь-то всё просто. А как вы думаете, что было бы, если бы формулировка задачи была бы вот такой:

Пятый член геометрической прогрессии равен 162, а первый член этой прогрессии равен 2. Найдите знаменатель прогрессии.

В чём отличие? Да! В условии ничего не сказано про знак знаменателя. Ни прямо, ни косвенно. И вот тут задачка уже имела бы два решения!

q = 3 и q = -3

Да-да! И с плюсом и с минусом.) Математически сей факт означал бы, что существуют две прогрессии , которые подходят под условие задачи. И для каждой – свой знаменатель. Ради интереса, потренируйтесь и выпишите первые пять членов каждой из них.)

А теперь потренируемся номер члена находить. Эта задачка самая сложная, да. Но зато и более творческая.)

Дана геометрическая прогрессия:

3; 6; 12; 24; …

Под каким номером в этой прогрессии стоит число 768?

Первый шаг всё тот же: пишем формулу n -го члена!

b n = b 1 · q n -1

А теперь, как обычно, подставляем в неё известные нам данные. Гм… не подставляется! Где первый член, где знаменатель, где всё остальное?!

Где-где… А глазки нам зачем? Ресницами хлопать? В этот раз прогрессия задана нам напрямую в виде последовательности. Первый член видим? Видим! Это – тройка (b 1 = 3). А знаменатель? Пока не видим, но он очень легко считается. Если, конечно, понимать, .

Вот и считаем. Прямо по смыслу геометрической прогрессии: берём любой её член (кроме первого) и делим на предыдущий.

Хотя бы вот так:

q = 24/12 = 2

Что ещё нам известно? Нам ещё известен некоторый член этой прогрессии, равный 768. Под каким-то номером n:

b n = 768

Номер его нам неизвестен, но наша задача как раз и состоит в том, чтобы его отыскать.) Вот и ищем. Все необходимые данные для подстановки в формулу мы уже скачали. Незаметно для себя.)

Вот и подставляем:

768 = 3·2 n -1

Делаем элементарные – делим обе части на тройку и переписываем уравнение в привычном виде: неизвестное слева, известное - справа.

Получаем:

2 n -1 = 256

Вот такое интересное уравнение. Надо найти "n". Что, непривычно? Да, я не спорю. Вообще-то, это простейшее . Оно так называется из-за того, что неизвестное (в данном случае это – номер n ) стоит в показателе степени.

На этапе знакомства с геометрической прогрессией (это девятый класс) показательные уравнения решать не учат, да… Это тема старших классов. Но страшного ничего нет. Даже если вы не в курсе, как решаются такие уравнения, попробуем найти наше n , руководствуясь простой логикой и здравым смыслом.

Начинаем рассуждать. Слева у нас стоит двойка в какой-то степени . Мы пока не знаем, что это конкретно за степень, но это и не страшно. Но зато мы твёрдо знаем, что эта степень равна 256! Вот и вспоминаем, в какой же степени двойка даёт нам 256. Вспомнили? Да! В восьмой степени!

256 = 2 8

Если не вспомнили или с распознаванием степеней проблемы, то тоже ничего страшного: просто последовательно возводим двойку в квадрат, в куб, в четвёртую степень, пятую и так далее. Подбор, фактически, но на данном уровне – вполне прокатит.

Так или иначе, мы получим:

2 n -1 = 2 8

n -1 = 8

n = 9

Итак, 768 – это девятый член нашей прогрессии. Всё, задача решена.)

Ответ: 9

Что? Скучно? Надоела элементарщина? Согласен. И мне тоже. Шагаем на следующий уровень.)

Более сложные задачи.

А теперь решаем задачки покруче. Не то чтобы совсем уж сверхкрутые, но над которыми предстоит немного поработать, чтобы добраться до ответа.

Например, такая.

Найдите второй член геометрической прогрессии, если четвёртый её член равен -24, а седьмой член равен 192.

Это классика жанра. Известны какие-то два разных члена прогрессии, а найти надо ещё какой-то член. Причём все члены НЕ соседние. Что и смущает поначалу, да…

Как и в , для решения таких задач рассмотрим два способа. Первый способ – универсальный. Алгебраический. Работает безотказно и с любыми исходными данными. Поэтому именно с него и начнём.)

Расписываем каждый член по формуле n -го члена!

Всё точь-в-точь как с арифметической прогрессией. Только в этот раз работаем с другой общей формулой. Вот и всё.) Но суть та же самая: берём и поочерёдно подставляем в формулу n-го члена наши исходные данные. Для каждого члена – свои.

Для четвёртого члена записываем:

b 4 = b 1 · q 3

-24 = b 1 · q 3

Есть. Одно уравнение готово.

Для седьмого члена пишем:

b 7 = b 1 · q 6

192 = b 1 · q 6

Итого получили два уравнения для одной и той же прогрессии .

Собираем из них систему:

Несмотря на её грозный вид, системка совсем простая. Самый очевидный способ решения – обычная подстановка. Выражаем b 1 из верхнего уравнения и подставляем в нижнее:

Немного повозившись с нижним уравнением (сократив степени и поделив на -24), получим:

q 3 = -8

К этому же уравнению, между прочим, можно прийти и более простым путём! Каким? Сейчас я вам продемонстрирую ещё один секретный, но оч-чень красивый, мощный и полезный способ решения подобных систем. Таких систем, в уравнениях которых сидят только произведения. Хотя бы в одном. Называется метод почленного деления одного уравнения на другое.

Итак, перед нами система:

В обоих уравнениях слева – произведение , а справа – просто число. Это очень хороший знак.) Давайте возьмём и… поделим, скажем, нижнее уравнение на верхнее! Что значит, поделим одно уравнение на другое? Очень просто. Берём левую часть одного уравнения (нижнего) и делим её на левую часть другого уравнения (верхнего). С правой частью аналогично: правую часть одного уравнения делим на правую часть другого.

Весь процесс деления выглядит так:

Теперь, сократив всё, что сокращается, получим:

q 3 = -8

Чем хорош этот способ? Да тем, что в процессе такого деления всё нехорошее и неудобное может благополучно сократиться и остаться вполне безобидное уравнение! Именно поэтому так важно наличие только умножения хотя бы в одном из уравнений системы. Нету умножения – нечего и сокращать, да…

А вообще, этот способ (как и многие другие нетривиальные способы решения систем) даже заслуживает отдельного урока. Обязательно его разберу поподробнее. Когда-нибудь…

Впрочем, неважно, как именно вы решаете систему, в любом случае теперь нам надо решить получившееся уравнение:

q 3 = -8

Никаких проблем: извлекаем корень (кубический) и – готово!

Прошу заметить, что здесь при извлечении ставить плюс/минус не нужно. Нечётной (третьей) степени у нас корень. И ответ – тоже один, да.)

Итак, знаменатель прогрессии найден. Минус два. Отлично! Процесс идёт.)

Для первого члена (скажем, из верхнего уравнения) мы получим:

Отлично! Знаем первый член, знаем знаменатель. И теперь у нас появилась возможность найти любой член прогрессии. В том числе и второй.)

Для второго члена всё совсем просто:

b 2 = b 1 · q = 3·(-2) = -6

Ответ: -6

Итак, алгебраический способ решения задачи мы с вами разложили по полочкам. Сложно? Не очень, согласен. Долго и нудно? Да, безусловно. Но иногда можно существенно сократить объём работы. Для этого есть графический способ. Старый добрый и знакомый нам по .)

Рисуем задачу!

Да! Именно так. Снова изображаем нашу прогрессию на числовой оси. Не обязательно по линеечке, не обязательно выдерживать равные интервалы между членами (которые, кстати, и не будут одинаковыми, т.к. прогрессия - геометрическая!), а просто схематично рисуем нашу последовательность.

У меня получилось вот так:


А теперь смотрим на картинку и соображаем. Сколько одинаковых множителей "q" разделяют четвёртый и седьмой члены? Верно, три!

Стало быть, имеем полное право записать:

-24· q 3 = 192

Отсюда теперь легко ищется q:

q 3 = -8

q = -2

Вот и отлично, знаменатель у нас уже в кармане. А теперь снова смотрим на картинку: сколько таких знаменателей сидит между вторым и четвёртым членами? Два! Стало быть, для записи связи между этими членами знаменатель будем возводить в квадрат .

Вот и пишем:

b 2 · q 2 = -24 , откуда b 2 = -24/ q 2

Подставляем наш найденный знаменатель в выражение для b 2 , считаем и получаем:

Ответ: -6

Как видим, всё гораздо проще и быстрее, чем через систему. Более того, здесь нам вообще даже не понадобилось считать первый член! Совсем.)

Вот такой простой и наглядный способ-лайт. Но есть у него и серьёзный недостаток. Догадались? Да! Он годится только для очень коротких кусочков прогрессии. Таких, где расстояния между интересующими нас членами не очень большие. А вот во всех остальных случаях картинку рисовать уже затруднительно, да… Тогда решаем задачу аналитически, через систему.) А системы – штука универсальная. С любыми числами справляются.

Ещё одна эпичная задачка:

Второй член геометрической прогрессии на 10 больше первого, а третий член на 30 больше второго. Найдите знаменатель прогрессии.

Что, круто? Вовсе нет! Всё то же самое. Снова переводим условие задачи в чистую алгебру.

1) Расписываем каждый член по формуле n -го члена!

Второй член: b 2 = b 1 ·q

Третий член: b 3 = b 1 ·q 2

2) Записываем связь между членами из условия задачи.

Читаем условие: "Второй член геометрической прогрессии на 10 больше первого". Стоп, это ценно!

Так и пишем:

b 2 = b 1 +10

И эту фразу переводим в чистую математику:

b 3 = b 2 +30

Получили два уравнения. Объединяем их в систему:

Система на вид простенькая. Но что-то уж много различных индексов у буковок. Подставим-ка вместо второго и третьего членов их выражения через первый член и знаменатель! Зря, что ли, мы их расписывали?

Получим:

А вот такая система – уже не подарок, да… Как такое решать? К сожалению, универсального секретного заклинания на решение сложных нелинейных систем в математике нет и быть не может. Это фантастика! Но первое что должно приходить вам в голову при попытке разгрызть подобный крепкий орешек – это прикинуть, а не сводится ли одно из уравнений системы к красивому виду, позволяющему, например, легко выразить одну из переменных через другую?

Вот и прикинем. Первое уравнение системы явно проще второго. Его и подвергнем пыткам.) А не попробовать ли из первого уравнения что-то выразить через что-то? Раз уж мы хотим найти знаменатель q , то выгоднее всего нам было бы выразить b 1 через q .

Вот и попробуем проделать эту процедуру с первым уравнением, применяя старые добрые :

b 1 q = b 1 +10

b 1 q – b 1 = 10

b 1 (q-1) = 10

Всё! Вот мы и выразили ненужную нам переменную (b 1) через нужную (q). Да, не самое простое выражение получили. Дробь какую-то… Но и система у нас приличного уровня, да.)

Типичное . Что делать – знаем.

Пишем ОДЗ (обязательно!) :

q ≠ 1

Умножаем всё на знаменатель (q-1) и сокращаем все дроби:

10 q 2 = 10 q + 30(q -1)

Делим всё на десятку, раскрываем скобки, собираем всё слева:

q 2 – 4 q + 3 = 0

Решаем получившееся и получаем два корня:

q 1 = 1

q 2 = 3

Окончательный ответ один: q = 3 .

Ответ: 3

Как вы видите, путь решения большинства задач на формулу n-го члена геометрической прогрессии всегда един: читаем внимательно условие задачи и с помощью формулы n-го члена переводим всю полезную информацию в чистую алгебру.

А именно:

1) Расписываем отдельно каждый данный в задаче член по формуле n -го члена.

2) Из условия задачи переводим связь между членами в математическую форму. Составляем уравнение или систему уравнений.

3) Решаем полученное уравнение или систему уравнений, находим неизвестные параметры прогрессии.

4) В случае неоднозначного ответа читаем внимательно условие задачи в поисках дополнительной информации (если таковая присутствует). Также сверяем полученный ответ с условиями ОДЗ (если таковые имеются).

А теперь перечислим основные проблемы, наиболее часто приводящие к ошибкам в процессе решения задач на геометрическую прогрессию.

1. Элементарная арифметика. Действия с дробями и отрицательными числами.

2. Если хотя бы с одним из этих трёх пунктов проблемы, то неизбежно будете ошибаться и в этой теме. К сожалению… Так что не ленитесь и повторите то о чём упомянуто выше. И по ссылочкам – сходите. Иногда помогает.)

Видоизменённые и рекуррентные формулы.

А теперь рассмотрим парочку типичных экзаменационных задачек с менее привычной подачей условия. Да-да, вы угадали! Это видоизменённые и рекуррентные формулы n-го члена. С такими формулами мы уже с вами сталкивались и работали в по арифметической прогрессии. Здесь всё аналогично. Суть та же.

Например, такая задачка из ОГЭ:

Геометрическая прогрессия задана формулой b n = 3·2 n . Найдите сумму первого и четвёртого её членов.

В этот раз прогрессия нам задана не совсем привычно. В виде какой-то формулы. Ну и что? Эта формула – тоже формула n -го члена! Мы же с вами знаем, что формулу n-го члена можно записать как в общем виде, через буквы, так и для конкретной прогрессии . С конкретными первым членом и знаменателем.

В нашем случае нам, на самом деле, задана формула общего члена для геометрической прогрессии вот с такими параметрами:

b 1 = 6

q = 2

Проверим?) Запишем формулу n-го члена в общем виде и подставим в неё b 1 и q . Получим:

b n = b 1 · q n -1

b n = 6·2 n -1

Упрощаем, используя разложение на множители и свойства степеней, и получаем:

b n = 6·2 n -1 = 3·2·2 n -1 = 3·2 n -1+1 = 3·2 n

Как видите, всё честно. Но наша с вами цель – не продемонстрировать вывод конкретной формулы. Это так, лирическое отступление. Чисто для понимания.) Наша цель - решить задачу по той формуле, что дана нам в условии. Улавливаете?) Вот и работаем с видоизменённой формулой напрямую.

Считаем первый член. Подставляем n =1 в общую формулу:

b 1 = 3·2 1 = 3·2 = 6

Вот так. Кстати, не поленюсь и ещё раз обращу ваше внимание на типовой ляп с подсчётом первого члена. НЕ НАДО, глядя на формулу b n = 3·2 n , сразу бросаться писать, что первый член – тройка! Это – грубейшая ошибка, да…)

Продолжаем. Подставляем n =4 и считаем четвёртый член:

b 4 = 3·2 4 = 3·16 = 48

Ну и наконец, считаем требуемую сумму:

b 1 + b 4 = 6+48 = 54

Ответ: 54

Ещё задачка.

Геометрическая прогрессия задана условиями:

b 1 = -7;

b n +1 = 3 b n

Найдите четвёртый член прогрессии.

Здесь прогрессия задана рекуррентной формулой. Ну и ладно.) Как работать с такой формулой – тоже знаем.

Вот и действуем. По шагам.

1) Считаем два последовательных члена прогрессии.

Первый член нам уже задан. Минус семь. А вот следующий, второй член, легко можно посчитать по рекуррентной формуле. Если понимать принцип её работы, конечно.)

Вот и считаем второй член по известному первому:

b 2 = 3 b 1 = 3·(-7) = -21

2) Считаем знаменатель прогрессии

Тоже никаких проблем. Прямо , делим второй член на первый.

Получаем:

q = -21/(-7) = 3

3) Пишем формулу n -го члена в привычном виде и считаем нужный член.

Итак, первый член знаем, знаменатель – тоже. Вот и пишем:

b n = -7·3 n -1

b 4 = -7·3 3 = -7·27 = -189

Ответ: -189

Как вы видите, работа с такими формулами для геометрической прогрессии ничем по своей сути не отличается от таковой для прогрессии арифметической. Важно лишь понимать общую суть и смысл этих формул. Ну и смысл геометрической прогрессии тоже надо понимать, да.) И тогда глупых ошибок не будет.

Ну что, порешаем самостоятельно?)

Совсем элементарные задачки, для разминки:

1. Дана геометрическая прогрессия, в которой b 1 = 243, а q = -2/3. Найдите шестой член прогрессии.

2. Общий член геометрической прогрессии задан формулой b n = 5∙2 n +1 . Найдите номер последнего трёхзначного члена этой прогрессии.

3. Геометрическая прогрессия задана условиями:

b 1 = -3;

b n +1 = 6 b n

Найдите пятый член прогрессии.

Чуть посложнее:

4. Дана геометрическая прогрессия:

b 1 =2048; q =-0,5

Чему равен шестой отрицательный её член?

Что, кажется суперсложно? Вовсе нет. Спасёт логика и понимание смысла геометрической прогрессии. Ну и формула n-го члена, само собой.

5. Третий член геометрической прогрессии равен -14, а восьмой член равен 112. Найдите знаменатель прогрессии.

6. Сумма первого и второго членов геометрической прогрессии равна 75, а сумма второго и третьего членов равна 150. Найдите шестой член прогрессии.

Ответы (в беспорядке): 6; -3888; -1; 800; -32; 448.

Вот почти и всё. Осталось лишь научиться нам считать сумму n первых членов геометрической прогрессии да открыть для себя бесконечно убывающую геометрическую прогрессию и её сумму. Очень интересную и необычную штуку, между прочим! Об этом - в следующих уроках.)

Математика – это то, посредством чего люди управляют природой и собой.

Советский математик, академик А.Н. Колмогоров

Геометрическая прогрессия.

Наряду с задачами на арифметические прогрессии также распространенными на вступительных испытаниях по математике являются задачи, связанные с понятием геометрической прогрессии. Для успешного решения таких задач необходимо знать свойства геометрической прогрессии и иметь хорошие навыки их использования.

Настоящая статья посвящена изложению основных свойств геометрической прогрессии. Здесь также приводятся примеры решения типовых задач , позаимствованных из заданий вступительных испытаний по математике.

Предварительно отметим основные свойства геометрической прогрессии и напомним наиболее важные формулы и утверждения , связанные с этим понятием.

Определение. Числовая последовательность называется геометрической прогрессией, если каждое ее число, начиная со второго, равно предыдущему, умноженному на одно и то же число . Число называется знаменателем геометрической прогрессии.

Для геометрической прогрессии справедливы формулы

, (1)

где . Формула (1) называется формулой общего члена геометрической прогрессии, а формула (2) представляет собой основное свойство геометрической прогрессии: каждый член прогрессии совпадает со средним геометрическим своих соседних членов и .

Отметим , что именно из-за этого свойства рассматриваемая прогрессия называется «геометрической».

Приведенные выше формулы (1) и (2) обобщаются следующим образом:

, (3)

Для вычисления суммы первых членов геометрической прогрессии применяется формула

Если обозначить , то

где . Так как , то формула (6) является обобщением формулы (5).

В том случае , когда и , геометрическая прогрессия является бесконечно убывающей. Для вычисления суммы всех членов бесконечно убывающей геометрической прогрессии используется формула

. (7)

Например , с помощью формулы (7) можно показать , что

где . Данные равенства получены из формулы (7) при условии, что , (первое равенство) и , (второе равенство).

Теорема. Если , то

Доказательство. Если , то ,

Теорема доказана.

Перейдем к рассмотрению примеров решения задач на тему «Геометрическая прогрессия».

Пример 1. Дано: , и . Найти .

Решение. Если применить формулу (5), то

Ответ: .

Пример 2. Пусть и . Найти .

Решение. Так как и , то воспользуемся формулами (5), (6) и получим систему уравнений

Если второе уравнение системы (9) разделить на первое , то или . Отсюда следует и . Рассмотрим два случая.

1. Если , то из первого уравнения системы (9) имеем .

2. Если , то .

Пример 3. Пусть , и . Найти .

Решение. Из формулы (2) следует, что или . Так как , то или .

По условию . Однако , поэтому . Поскольку и , то здесь имеем систему уравнений

Если второе уравнение системы разделить на первое, то или .

Так как , то уравнение имеет единственный подходящий корень . В таком случае из первого уравнения системы вытекает .

Принимая во внимание формулу (7), получаем.

Ответ: .

Пример 4. Дано: и . Найти .

Решение. Так как , то .

Поскольку , то или

Согласно формуле (2) имеем . В этой связи из равенства (10) получаем или .

Однако по условию , поэтому .

Пример 5. Известно, что . Найти .

Решение. Согласно теореме имеем два равенства

Так как , то или . Поскольку , то .

Ответ: .

Пример 6. Дано: и . Найти .

Решение. Принимая во внимание формулу (5), получаем

Так как , то . Поскольку , и , то .

Пример 7. Пусть и . Найти .

Решение. Согласно формуле (1) можно записать

Следовательно, имеем или . Известно, что и , поэтому и .

Ответ: .

Пример 8. Найти знаменатель бесконечной убывающей геометрической прогрессии , если

и .

Решение. Из формулы (7) следует и . Отсюда и из условия задачи получаем систему уравнений

Если первое уравнение системы возвести в квадрат , а затем полученное уравнение разделить на второе уравнение , то получим

Или .

Ответ: .

Пример 9. Найти все значения , при которых последовательность , , является геометрической прогрессией.

Решение. Пусть , и . Согласно формуле (2), которая задает основное свойство геометрической прогрессии, можно записать или .

Отсюда получаем квадратное уравнение , корнями которого являются и .

Выполним проверку: если , то , и ; если , то , и .

В первом случае имеем и , а во втором – и .

Ответ: , .

Пример 10. Решить уравнение

, (11)

где и .

Решение. Левая часть уравнения (11) представляет собой сумму бесконечной убывающей геометрической прогрессии, в которой и , при условии: и .

Из формулы (7) следует , что . В этой связи уравнение (11) принимает вид или . Подходящим корнем квадратного уравнения является

Ответ: .

Пример 11. П оследовательность положительных чисел образует арифметическую прогрессию , а – геометрическую прогрессию , причем здесь . Найти .

Решение. Так как арифметическая последовательность , то (основное свойство арифметической прогрессии). Поскольку , то или . Отсюда следует , что геометрическая прогрессия имеет вид . Согласно формуле (2) , далее запишем , что .

Так как и , то . В таком случае выражение принимает вид или . По условию , поэтому из уравнения получаем единственное решение рассматриваемой задачи , т.е. .

Ответ: .

Пример 12. Вычислить сумму

. (12)

Решение. Умножим на 5 обе части равенства (12) и получим

Если из полученного выражения вычесть (12) , то

или .

Для вычисления подставим в формулу (7) значения , и получим . Так как , то .

Ответ: .

Приведенные здесь примеры решения задач будут полезны абитуриентам при подготовке к вступительным испытаниям. Для более глубокого изучения методов решения задач , связанных с геометрической прогрессией , можно использовать учебные пособия из списка рекомендуемой литературы.

1. Сборник задач по математике для поступающих во втузы / Под ред. М.И. Сканави. – М.: Мир и Образование, 2013. – 608 с.

2. Супрун В.П. Математика для старшеклассников: дополнительные разделы школьной программы. – М.: Ленанд / URSS , 2014. – 216 с.

3. Медынский М.М. Полный курс элементарной математики в задачах и упражнениях. Книга 2: Числовые последовательности и прогрессии. – М.: Эдитус , 2015. – 208 с.

Остались вопросы?

Чтобы получить помощь репетитора – зарегистрируйтесь .

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Геометрическая прогрессия не менее важная в математике по сравнению с арифметической. Геометрической прогрессией называют такую последовательность чисел b1, b2,..., b[n] каждый следующий член которой, получается умножением предыдущего на постоянное число. Это число, которое также характеризует скорость роста или убывания прогрессии называют знаменателем геометрической прогрессии и обозначают

Для полного задания геометрической прогрессии кроме знаменателя необходимо знать или определить первый ее член. Для положительного значения знаменателя прогрессия является монотонной последовательностью, причем если это последовательность чисел является монотонно убывающей и при монотонно возрастающей. Случай, когда знаменатель равен единице на практике не рассматривается, поскольку имеем последовательность одинаковых чисел, а их суммирование не вызывает практического интереса

Общий член геометрической прогрессии вычисляют по формуле

Сумма n первых членов геометрической прогрессии определяют по формуле

Рассмотрим решения классических задач на геометрическую прогрессию. Начнем для понимания с простейших.

Пример 1. Первый член геометрической прогрессии равен 27, а ее знаменатель равен 1/3. Найти шесть первых членов геометрической прогрессии.

Решение: Запишем условие задачи в виде

Для вычислений используем формулу n-го члена геометрической прогрессии

На ее основе находим неизвестные члены прогрессии

Как можно убедиться, вычисления членов геометрической прогрессии несложные. Сама прогрессия будет выглядеть следующим образом

Пример 2. Даны три первых члена геометрической прогрессии : 6; -12; 24. Найти знаменатель и седьмой ее член.

Решение: Вычисляем знаменатель геомитрической прогрессии исходя из его определения

Получили знакопеременную геометрическую прогрессию знаменатель которой равен -2. Седьмой член вычисляем по формуле

На этом задача решена.

Пример 3. Геометрическая прогрессия задана двумя ее членами . Найти десятый член прогрессии.

Решение:

Запишем заданные значения через формулы

По правилам нужно было бы найти знаменатель, а затем искать нужное значение, но для десятого члена имеем

Такую же формулу можно получить на основе нехитрых манипуляций с входными данными. Разделим шестой член ряда на другой, в результате получим

Если полученное значение умножить на шестой член, получим десятый

Таким образом, для подобных задач с помощью несложных преобразований в быстрый способ можно отыскать правильное решение.

Пример 4. Геометрическая прогрессия задано рекуррентными формулами

Найти знаменатель геометрической прогрессии и сумму первых шести членов.

Решение:

Запишем заданные данные в виде системы уравнений

Выразим знаменатель разделив второе уравнение на первое

Найдем первый член прогрессии из первого уравнения

Вычислим следующие пять членов для нахождения суммы геометрической прогрессии

Геометрическая прогрессия, наряду с арифметической, является важным числовым рядом, который изучается в школьном курсе алгебры в 9 классе. В данной статье рассмотрим знаменатель геометрической прогрессии, и то, как его значение влияет на ее свойства.

Определение прогрессии геометрической

Для начала приведем определение этого числового ряда. Прогрессией геометрической называют такой ряд рациональных чисел, который формируется путем последовательного умножения его первого элемента на постоянное число, носящее название знаменателя.

Например, числа в ряду 3, 6, 12, 24, ... - это прогрессия геометрическая, поскольку если умножить 3 (первый элемент) на 2, то получим 6. Если 6 умножить на 2, то получим 12, и так далее.

Члены рассматриваемой последовательности принято обозначать символом ai, где i - это целое число, указывающее на номер элемента в ряду.

Приведенное выше определение прогрессии можно записать на языке математики следующим образом: an = bn-1 * a1, где b - знаменатель. Проверить эту формулу легко: если n = 1, то b1-1 = 1, и мы получаем a1 = a1. Если n = 2, тогда an = b * a1, и мы снова приходим к определению рассматриваемого ряда чисел. Аналогичные рассуждения можно продолжить для больших значений n.

Знаменатель прогрессии геометрической


Число b полностью определяет, какой характер будет носить весь числовой ряд. Знаменатель b может быть положительный, отрицательный, а также иметь значение больше единицы или меньше. Все перечисленные варианты приводят к разным последовательностям:

  • b > 1. Имеет место возрастающий ряд рациональных чисел. Например, 1, 2, 4, 8, ... Если элемент a1 будет отрицательным, тогда вся последовательность будет возрастать только по модулю, но убывать с учетом знака чисел.
  • b = 1. Часто такой случай не называют прогрессией, поскольку имеет место обычный ряд одинаковых рациональных чисел. Например, -4, -4, -4.

Формула для суммы

Перед тем как перейти к рассмотрению конкретных задач с использованием знаменателя рассматриваемого вида прогрессии, следует привести важную формулу для суммы ее первых n элементов. Формула имеет вид: Sn = (bn - 1) * a1 / (b - 1).

Получить это выражение можно самостоятельно, если рассмотреть рекурсивную последовательность членов прогрессии. Также заметим, что в приведенной формуле достаточно знать только первый элемент и знаменатель, чтобы найти сумму произвольного числа членов.

Бесконечно убывающая последовательность


Выше было дано пояснение, что она собой представляет. Теперь, зная формулу для Sn, применим ее к этому числовому ряду. Так как любое число, модуль которого не превышает 1, при возведении в большие степени стремится к нулю, то есть b∞ => 0, если -1

Поскольку разность (1 - b) всегда будет положительной, независимо от значения знаменателя, то знак суммы убывающей бесконечно прогрессии геометрической S∞ однозначно определяется знаком ее первого элемента a1.

Теперь рассмотрим несколько задач, где покажем, как применять полученные знания на конкретных числах.

Задача № 1. Вычисление неизвестных элементов прогрессии и суммы

Дана прогрессия геометрическая, знаменатель прогрессии 2, а ее первый элемент 3. Чему будут равны ее 7-й и 10-й члены, и какова сумма ее семи начальных элементов?

Условие задачи составлено достаточно просто и предполагает непосредственное использование вышеназванных формул. Итак, для вычисления элемента с номером n используем выражение an = bn-1 * a1. Для 7-го элемента имеем: a7 = b6 * a1, подставляя известные данные, получаем: a7 = 26 * 3 = 192. Аналогичным образом поступаем для 10-го члена: a10 = 29 * 3 = 1536.

Воспользуемся известной формулой для суммы и определим эту величину для 7-ми первых элементов ряда. Имеем: S7 = (27 - 1) * 3 / (2 - 1) = 381.

Задача № 2. Определение суммы произвольных элементов прогрессии

Пусть -2 равен знаменатель прогрессии в геометрической прогрессии bn-1 * 4, где n - целое число. Необходимо определить сумму с 5-го по 10-й элемент этого ряда включительно.

Поставленная проблема не может быть решена непосредственно с использованием известных формул. Решить ее можно 2-мя различными методами. Для полноты изложения темы приведем оба.

Метод 1. Идея его проста: необходимо рассчитать две соответствующие суммы первых членов, а затем вычесть из одной другую. Вычисляем меньшую сумму: S10 = ((-2)10 - 1) * 4 / (-2 - 1) = -1364. Теперь вычисляем большую сумму: S4 = ((-2)4 - 1) * 4 / (-2 - 1) = -20. Отметим, что в последнем выражении суммировались только 4 слагаемых, поскольку 5-е уже входит в сумму, которую требуется вычислить по условию задачи. Наконец, берем разницу: S510 = S10 - S4 = -1364 - (-20) = -1344.

Метод 2. Перед тем, как подставлять цифры и считать, можно получить формулу для суммы между членами m и n рассматриваемого ряда. Поступаем абсолютно так же, как в методе 1, только работаем сначала с символьным представлением суммы. Имеем: Snm = (bn - 1) * a1 / (b - 1) - (bm-1 - 1) * a1 / (b - 1) = a1 * (bn - bm-1) / (b - 1). В полученное выражение можно подставлять известные числа и вычислять конечный результат: S105 = 4 * ((-2)10 - (-2)4) / (-2 - 1) = -1344.

Задача № 3. Чему равен знаменатель?


Пусть a1 = 2, найдите знаменатель прогрессии геометрической, при условии, что ее бесконечная сумма составляет 3, и известно, что это убывающий ряд чисел.

По условию задачи нетрудно догадаться, какой формулой следует пользоваться для ее решения. Конечно же, для суммы прогрессии бесконечно убывающей. Имеем: S∞ = a1 / (1 - b). Откуда выражаем знаменатель: b = 1 - a1 / S∞. Осталось подставить известные значения и получить требуемое число: b = 1 - 2 / 3 = -1 / 3 или -0,333(3). Можно качественно проверить этот результат, если вспомнить, что для этого типа последовательности модуль b не должен выходить за пределы 1. Как видно, |-1 / 3|

Задача № 4. Восстановление ряда чисел

Пусть даны 2 элемента числового ряда, например, 5-й равен 30 и 10-й равен 60. Необходимо по этим данным восстановить весь ряд, зная, что он удовлетворяет свойствам прогрессии геометрической.

Чтобы решить задачу, необходимо для начала записать для каждого известного члена соответствующее выражение. Имеем: a5 = b4 * a1 и a10 = b9 * a1. Теперь разделим второе выражение на первое, получим: a10 / a5 = b9 * a1 / (b4 * a1) = b5. Отсюда определяем знаменатель, взяв корень пятой степени от отношения известных из условия задачи членов, b = 1,148698. Полученное число подставляем в одно из выражений для известного элемента, получаем: a1 = a5 / b4 = 30 / (1,148698)4 = 17,2304966.

Таким образом, мы нашли, чему равен знаменатель прогрессии bn, и геометрическую прогрессию bn-1 * 17,2304966 = an, где b = 1,148698.

Где применяются прогрессии геометрические?


Если бы не существовало применения этого числового ряда на практике, то его изучение сводилось бы к чисто теоретическому интересу. Но такое применение существует.


Ниже перечислены 3 самых знаменитых примера:

  • Парадокс Зенона, в котором ловкий Ахиллес не может догнать медленную черепаху, решается с использованием понятия убывающей бесконечно последовательности чисел.
  • Если на каждую клетку шахматной доски класть зерна пшеницы так, что на 1-ю клетку положить 1 зерно, на 2-ю - 2, на 3-ю - 3 и так далее, то чтобы заполнить все клетки доски понадобится 18446744073709551615 зерен!
  • В игре "Башня Ханоя", чтобы переставить диски с одного стержня на другой, необходимо выполнить 2n - 1 операций, то есть их число растет в геометрической прогрессии от количества используемых дисков n.