Меню
Бесплатно
Главная  /  Товары  /  Телескоп «Джеймс Уэбб» – самый мощный телескоп в мире (28 фото). Телескопы. История телескопов. Виды телескопов Диафрагма: наиболее важная особенность телескопа

Телескоп «Джеймс Уэбб» – самый мощный телескоп в мире (28 фото). Телескопы. История телескопов. Виды телескопов Диафрагма: наиболее важная особенность телескопа

Оптические телескопические системы используют в астрономии (для наблюдения за небесными светилами ), в оптике для различных вспомогательных целей: например, для изменения расходимости лазерного излучения . Также, телескоп может использоваться в качестве зрительной трубы , для решения задач наблюдения за удалёнными объектами . Самые первые чертежи простейшего линзового телескопа были обнаружены в записях Леонардо Да Винчи. Построил телескоп в Липперсгей . Также создание телескопа приписывается его современнику Захарию Янсену .

История

Годом изобретения телескопа, а вернее зрительной трубы , считают 1608 год , когда голландский очковый мастер Иоанн Липперсгей продемонстрировал своё изобретение в Гааге . Тем не менее в выдаче патента ему было отказано в силу того, что и другие мастера, как Захарий Янсен из Мидделбурга и Якоб Метиус из Алкмара , уже обладали экземплярами подзорных труб, а последний вскоре после Липперсгея подал в Генеральные штаты (голландский парламент) запрос на патент . Позднейшее исследование показало, что, вероятно, подзорные трубы были известны ранее, ещё в 1605 году . В «Дополнениях в Вителлию», опубликованных в 1604 г., Кеплер рассмотрел ход лучей в оптической системе, состоящей из двояковыпуклой и двояковогнутой линз. Самые первые чертежи простейшего линзового телескопа (причем как однолинзового, так и двухлинзового) были обнаружены ещё в записях Леонардо да Винчи , датируемых 1509 годом. Сохранилась его запись: «Сделай стекла, чтобы смотреть на полную Луну» («Атлантический кодекс»).

Первым, кто направил зрительную трубу в небо, превратив её в телескоп, и получил новые научные данные, стал Галилей . В 1609 году он создал свою первую зрительную трубу с трёхкратным увеличением. В том же году он построил телескоп с восьмикратным увеличением длиной около полуметра. Позже им был создан телескоп, дававший 32-кратное увеличение: длина телескопа была около метра, а диаметр объектива - 4,5 см. Это был очень несовершенный инструмент, обладавший всеми возможными аберрациями . Тем не менее, с его помощью Галилей сделал ряд открытий.

Название «телескоп» предложил в 1611 году греческий математик Иоаннис Димисианос (Giovanni Demisiani-Джованни Демизиани) для одного из инструментов Галилея , показанного на загородном симпосии Академии деи Линчеи . Сам Галилей использовал для своих телескопов термин лат. perspicillum .

«Телескоп Галилея», Музей Галилея (Флоренция)

В 20-м веке также наблюдалось развитие телескопов, которые работали в широком диапазоне длин волн от радио до гамма-лучей. Первый специально созданный радиотелескоп вступил в строй в 1937 году. С тех пор было разработано огромное множество сложных астрономических приборов.

Оптические телескопы

Телескоп представляет собой трубу (сплошную, каркасную), установленную на монтировке , снабжённой осями для наведения на объект наблюдения и слежения за ним. Визуальный телескоп имеет объектив и окуляр . Задняя фокальная плоскость объектива совмещена с передней фокальной плоскостью окуляра . В фокальную плоскость объектива вместо окуляра может помещаться фотоплёнка или матричный приёмник излучения . В таком случае объектив телескопа, с точки зрения оптики, является фотообъективом , а сам телескоп превращается в астрограф . Телескоп фокусируется при помощи фокусёра (фокусировочного устройства).

По своей оптической схеме большинство телескопов делятся на:

  • Линзовые (рефракторы или диоптрические) - в качестве объектива используется линза или система линз.
  • Зеркальные (рефлекторы или катаптрические) - в качестве объектива используется вогнутое зеркало .
  • Зеркально-линзовые телескопы (катадиоптрические) - в качестве объектива используется обычно сферическое главное зеркало , а для компенсации его аберраций служат линзы.

Радиотелескопы

Радиотелескопы Very Large Array в штате Нью-Мексико, США

Для исследования космических объектов в радиодиапазоне применяют радиотелескопы. Основными элементами радиотелескопов являются принимающая антенна и радиометр - чувствительный радиоприемник, перестраиваемый по частоте, и принимающая аппаратура. Поскольку радиодиапазон гораздо шире оптического, для регистрации радиоизлучения используют различные конструкции радиотелескопов, в зависимости от диапазона. В длинноволновой области (метровый диапазон; десятки и сотни мегагерц) используют телескопы составленные из большого числа (десятков, сотен или, даже, тысяч) элементарных приемников, обычно диполей. Для более коротких волн (дециметровый и сантиметровый диапазон; десятки гигагерц) используют полу- или полноповоротные параболические антенны. Кроме того, для увеличения разрешающей способности телескопов, их объединяют в интерферометры . При объединении нескольких одиночных телескопов, расположенных в разных частях земного шара, в единую сеть, говорят о радиоинтерферометрии со сверхдлинной базой (РСДБ). Примером такой сети может служить американская система VLBA (англ. Very Long Baseline Array ). С 1997 по 2003 год функционировал японский орбитальный радиотелескоп HALCA (англ. Highly Advanced Laboratory for Communications and Astronomy ), включенный в сеть телескопов VLBA, что позволило существенно улучшить разрешающую способность всей сети. Российский орбитальный радиотелескоп Радиоастрон также планируется использовать в качестве одного из элементов гигантского интерферометра.

Космические телескопы

Земная атмосфера хорошо пропускает излучения в оптическом (0,3-0,6 мкм), ближнем инфракрасном (0,6-2 мкм) и радио (1 мм - 30 ) диапазонах. Однако с уменьшением длины волны прозрачность атмосферы сильно снижается, вследствие чего наблюдения в ультрафиолетовом, рентгеновском и гамма диапазонах становятся возможными только из космоса. Исключением является регистрация гамма-излучения сверхвысоких энергий, для которого подходят методы астрофизики космических лучей : высокоэнергичные гамма-фотоны в атмосфере порождают вторичные электроны, которые регистрируются наземными установками по черенковскому свечению . Примером такой системы может служить телескоп CACTUS .

В инфракрасном диапазоне также сильно поглощение в атмосфере, однако, в области 2-8 мкм имеется некоторое количество окон прозрачности (как и в миллиметровом диапазоне), в которых можно проводить наблюдения. Кроме того, поскольку большая часть линий поглощения в инфракрасном диапазоне принадлежит молекулам воды , инфракрасные наблюдения можно проводить в сухих районах Земли (разумеется, на тех длинах волн, где образуются окна прозрачности в связи с отсутствием воды). Примером такого размещения телескопа может служить Южнополярный телескоп (англ. South Pole Telescope ), установленный на южном географическом полюсе , работающий в субмиллиметровом диапазоне.

В оптическом диапазоне атмосфера прозрачна, однако из-за Рэлеевского рассеяния она по-разному пропускает свет разной частоты, что приводит к искажению спектра светил (спектр сдвигается в сторону красного). Кроме того, атмосфера всегда неоднородна, в ней постоянно существуют течения (ветры), что приводит к искажению изображения. Поэтому разрешение земных телескопов ограничено значением приблизительно в 1 угловую секунду, независимо от апертуры телескопа. Эту проблему можно частично решить применением адаптивной оптики , позволяющей сильно снизить влияние атмосферы на качество изображения, и поднятием телескопа на большую высоту, где атмосфера более разреженная - в горы , или в воздух на самолетах или стратосферных баллонах . Но наибольшие результаты достигаются с выносом телескопов в космос. Вне атмосферы искажения полностью отсутствуют, поэтому максимальное теоретическое разрешение телескопа определяется только дифракционным пределом : φ=λ/D (угловое разрешение в радианах равно отношению длины волны к диаметру апертуры). Например, теоретическая разрешающая способность космического телескопа с зеркалом диаметром 2.4 метра (как у телескопа Хаббл) на длине волны 555 нм составляет 0.05 угловой секунды (реальное разрешение Хаббла в два раза хуже - 0.1 секунды, но все равно на порядок выше, чем у земных телескопов).

Вынос в космос позволяет поднять разрешение и у радиотелескопов, но по другой причине. Каждый радиотелескоп сам по себе обладает очень маленьким разрешением. Это объясняется тем, что длина радиоволн на несколько порядков больше, чем видимого света, поэтому дифракционный предел φ=λ/D намного больше, даже несмотря на то, что размер радиотелескопа тоже в десятки раз больше, чем у оптического. Например, при апертуре 100 метров (в мире существуют только два таких больших радиотелескопа) разрешающая способность на длине волны 21 см (линия нейтрального водорода) составляет всего 7 угловых минут, а на длине 3 см - 1 минута, что совершенно недостаточно для астрономических исследований (для сравнения, разрешающая способность невооруженного глаза 1 минута, видимый диаметр Луны - 30 минут). Однако, объединив два радиотелескопа в радиоинтерферометр , можно существенно повысить разрешение - если расстояние между двумя радиотелескопами (так называемая база радиоинтерферометра ) равна L, то угловое разрешение определяется уже не формулой φ=λ/D, а φ=λ/L. Например при L=4200 км и λ=21 см максимальное разрешение составит около одной сотой угловой секунды. Однако, для земных телескопов максимальная база не может, очевидно, превышать диаметр Земли. Запустив один из телескопов в дальний космос, можно значительно увеличить базу, а следовательно, и разрешение. Например, разрешение космического телескопа Радиоастрон при работе совместно с земным радиотелескопом в режиме радиоинтерферометра (база 390 тыс. км) составит от 8 до 500 микросекунд дуги в зависимости от длины волны (1,2-92 см). (для сравнения - под углом 8 мкс виден объект размером 3 м на расстоянии Юпитера, или объект размером с Землю на расстоянии

Если вы решили купить телескоп, то вам сначала нужно понять, что он собой представляет, какие виды их бывают, и какой вариант лучше выбрать. В этом мы и попытаемся помочь вам разобраться.

Если вы решили купить телескоп, то вам сначала нужно понять, что он собой представляет, какие виды их бывают, и какой вариант лучше выбрать. В этом мы и попытаемся помочь вам разобраться.

Что такое телескоп и зачем он нужен
Телескоп - это прибор, который позволяет наблюдать за разными небесными объектами, которые сильно удалены от точки наблюдения. Наиболее часто они применяются для наблюдения именно за небесными телами, но иногда с их помощью рассматриваются и земные объекты. Ранее они были очень дорогими, и позволить их себе могли только астрономы и уфологии. Сегодня приборы такого рода гораздо доступнее, и позволить их себе могут и обычные люди. Например, купить их может помочь магазин «Звездочет».

Оптические телескопы
Разные телескопы могут работать в разных диапазонах электромагнитных спектров. Наиболее распространен оптический телескоп. Практически все любительские телескопы сегодня являются оптическими. Такие приборы работают со светом. Также бывают радиотелескопы, нейтринные, гравитационные, рентгеновские и гамма телескопы. Однако это все относится к научному оборудованию, которое в быту не применяется.

Виды телескопов
Оптические телескопы, как профессиональные, так и любительские, подразделяются на три типа. Главный критерий тут – объектив телескопа, вернее принцип, по которому он работает. Различные виды телескопов вы можете найти на сайте www.astronom.ru .

Линзовый телескоп
Линзовыми называются рефракторами, и они появились на свет самыми первыми. Создателем их стал Галилео Галилей. Преимущество таких телескопов в том, что им почти не нужно специальное обслуживание, они гарантируют хорошую цветопередачу, четкое изображение. Такие варианты хорошо подходят для изучения Луны, планет, а также двойных звезд. Стоит отметить, что эти устройства максимально подходят для профессионалов, так как они не так уж просты в использовании, а кроме того имеют достаточно большие размеры и высокую стоимость.

Зеркальный телескоп

Зеркальными называются рефлекторами. Их объективы состоят только их зеркал. Как и выпуклая линза, зеркало вогнутого типа собирает свет в определенной точке. Если в этой точке будет помещен окуляр, то можно увидеть изображение. Среди достоинств такого телескопа выделяется минимальная цена на единицу диаметра устройства, так как большие зеркала изготовлять значительно выгоднее, чем большие линзы. Также они компактны и легки в транспортировке, при этом дают яркие картинки с небольшими искажениями. Конечно, у зеркальных есть и свои недостатки. Это дополнительное время на термостабилизацию, отсутствие защиты от пыли и воздуха, которые могут портить изображение.

Зеркально-линзовые телескопы
Они называются катадиоптрическими, и в них могут применяться как линзы, так и зеркала. Плюс такого телескопа - универсальность, так как с их помощью можно наблюдать и планеты с Луной, и объекты дальнего космоса. Также они весьма компактны и выгодны. Единственный момент – это сложность конструкции, что усложняет самостоятельную юстировку устройства.

Телескоп «Джеймс Уэбб» - это орбитальная инфракрасная обсерватория, которая должна заменить тот самый знаменитый космический телескоп «Хаббл».

Это очень сложный механизм. Работа над его идет около 20 лет! «Джеймс Уэбб» будет обладать составным зеркалом 6,5 метров в диаметре и стоить около 6.8 млрд долларов. Для сравнения, диаметр зеркала «Хаббла» - «всего» 2.4 метра.

Посмотрим?

1. Телескоп «Джеймс Уэбб» должен быть размещен на гало-орбите в точке Лагранжа L2 системы Солнце - Земля. А в космосе холодно. Здесь показаны испытания, проводимые 30 марта 2012, направленные на изучение возможности противостоять холодным температурам пространства. (Фото Chris Gunn | NASA):

2. «Джеймс Уэбб» будет обладать составным зеркалом 6.5 метров в диаметре с площадью собирающей поверхности 25 м². Много это, или мало? (Фото Chris Gunn):

3. Сравним с «Хабблом». Зеркало «Хаббла» (слева) и «Уэбба» (справа) в одном масштабе:

4. Полномасштабная модель космического телескопа Джеймса Уэбба в Остине, штат Техас, 8 марта 2013. (Фото Chris Gunn):

5. Проект телескопа представляет собой международное сотрудничество 17 стран, во главе которых стоит NASA, со значительным вкладом Европейского и Канадского космических агентств. (Фото Chris Gunn):

Полномасштабная модель космического телескопа Джеймса Уэбба в Остине

6. Изначально запуск намечался на 2007 год, в дальнейшем переносился на 2014 и на 2015 год. Однако первый сегмент зеркала был установлен на телескоп лишь в конце 2015 года, а полностью главное составное зеркало было собрано только в феврале 2016 года.(Фото Chris Gunn):

7. Чувствительность телескопа и его разрешающая способность напрямую связаны с размером площади зеркала, которое собирает свет от объектов. Учёные и инженеры определили, что минимальный диаметр главного зеркала должен быть 6.5 метра, чтобы измерить свет от самых далёких галактик.

Простое изготовление зеркала, подобного зеркалу телескопа «Хаббл», но большего размера, было неприемлемо, так как его масса была бы слишком большой, чтобы можно было запустить телескоп в космос. Команде учёных и инженеров необходимо было найти решение, чтобы новое зеркало имело 1/10 массы зеркала телескопа «Хаббл» на единицу площади. (Фото Chris Gunn):

8. Не только у нас всё дорожает от начальной сметы. Так, стоимость телескопа «Джеймс Уэбб» превысила изначальные расчёты по меньшей мере в 4 раза. Планировалось, что телескоп обойдётся в 1,6 млрд долл. и будет запущен в 2011 году, однако по новым оценкам стоимость может составить 6.8 млрд, при этом запуск состоится не ранее 2018 года. (Фото Chris Gunn):

9. Это спектрограф ближнего инфракрасного диапазона. Он будет анализировать спектр источников, что позволит получать информацию как о физических свойствах исследуемых объектов (например, температуре и массе), так и об их химическом составе. (Фото Chris Gunn):

Испытания солнцезащитного экрана

Телескоп позволит обнаруживать относительно холодные экзопланеты с температурой поверхности до 300 К (что практически равно температуре поверхности Земли), находящиеся дальше 12 а. е. от своих звёзд, и удалённые от Земли на расстояние до 15 световых лет. В зону подробного наблюдения попадут более двух десятков ближайших к Солнцу звезд. Благодаря «Джеймсу Уэббу» ожидается настоящий прорыв в экзопланетологии - возможностей телескопа будет достаточно не только для того, чтобы обнаруживать сами экзопланеты, но даже спутники и спектральные линии этих планет.

11. Инженеры тестируют в камере. систему подъема телескопа, 9 сентября 2014. (Фото Chris Gunn):

12. Исследование зеркал, 29 сентября 2014. Шестиугольная форма сегментов была выбрана не случайно. Она обладает высоким коэффициентом заполнения и имеет симметрию шестого порядка. Высокий коэффициент заполнения означает, что сегменты подходят друг к другу без зазоров. Благодаря симметрии 18 сегментов зеркала можно разделить на три группы, в каждой из которых настройки сегментов идентичны. Наконец, желательно, чтобы зеркало имело форму, близкую к круговой - для максимально компактного фокусирования света на детекторах. Овальное зеркало, например, дало бы вытянутое изображение, а квадратное послало бы много света из центральной области. (Фото Chris Gunn):

Исследование зеркал

13. Очистка зеркала сухим льдом из двуокиси углерода. Тряпками здесь никто не трет. (Фото Chris Gunn):

Очистка зеркала сухим льдом из двуокиси углерода

14. Камера A - это гигантская испытательная камера с вакуумом, которая будет моделировать космическое пространства при испытаниях телескопа «Джеймса Уэбба», 20 мая 2015. (Фото Chris Gunn):

17. Размер каждого из 18 шестигранных сегментов зеркала составляет 1.32 метра от ребра до ребра. (Фото Chris Gunn):

18. Масса непосредственно самого́ зеркала в каждом сегменте - 20 кг, а масса всего сегмента в сборе - 40 кг. (Фото Chris Gunn):

19. Для зеркала телескопа «Джеймса Уэбба» используется особый тип бериллия. Он представляет собой мелкий порошок. Порошок помещается в контейнер из нержавеющей стали и прессуется в плоскую форму. После того как стальной контейнер удалён, кусок бериллия разрезается пополам, чтобы сделать две заготовки зеркала около 1.3 метра в поперечнике. Каждая заготовка зеркала используется для создания одного сегмента. (Фото Chris Gunn):

20. Затем поверхность каждого зеркала стачивается для придания формы, близкой к расчётной. После этого зеркало тщательно сглаживают и полируют. Этот процесс повторяется до тех пор, пока форма сегмента зеркала не станет близка к идеальной. Далее сегмент охлаждается до температуры −240 °C, и с помощью лазерного интерферометра производятся измерения размеров сегмента. Затем зеркало с учётом полученной информации проходит окончательную полировку. (Фото Chris Gunn):

21. По завершению обработки сегмента передняя часть зеркала покрывается тонким слоем золота для лучшего отражения инфракрасного излучения в диапазоне 0,6-29 мкм, и готовый сегмент проходит повторные испытания при криогенных температурах. (Фото Chris Gunn):

22. Работа над телескопом в ноябре 2016 года. (Фото Chris Gunn):

23. НАСА завершило сборку космического телескопа «Джеймс Уэбб» в 2016 году и приступило к его испытаниям. Это снимок от 5 марта 2017 года. На длинной выдержке техники выглядят призраками. (Фото Chris Gunn):

Транспортировка телескопа в Хьюстон

26. Дверь в ту самую камеру А с 14-й фотографии, в которой моделируется космическое пространство. (Фото Chris Gunn):

Телескоп «Джеймс Уэбб» внутри камеры А

Телескоп - это уникальный оптический прибор, предназначенный для наблюдения за небесными телами. Использование приборов позволяет рассмотреть самые разные объекты, не только те, которые располагаются недалеко от нас, но и те, которые находятся за тысячи световых лет от нашей планеты. Так что такое телескоп и кто его придумал?

Первый изобретатель

Телескопические устройства появились в семнадцатом веке. Однако по сей день ведутся дебаты, кто изобрел телескоп первым - Галилей или Липперсхей. Эти споры связаны с тем, что оба ученых примерно в одно время вели разработки оптических устройств.

В 1608 году Липперсхей разработал очки для знати, позволяющие видеть удаленные объекты вблизи. В это время велись военные переговоры. Армия быстро оценила пользу разработки и предложила Липперсхею не закреплять авторские права за устройством, а доработать его так, чтобы в него можно было бы смотреть двумя глазами. Ученый согласился.

Новую разработку ученого не удалось удержать втайне: сведения о ней были опубликованы в местных печатных изданиях. Журналисты того времени назвали прибор зрительной трубой. В ней использовалось две линзы, которые позволяли увеличить предметы и объекты. С 1609 года в Париже вовсю продавали трубы с трехкратным увеличением. С этого года какая-либо информация о Липперсхее исчезает из истории, а появляются сведения о другом ученом и его новых открытиях.

Примерно в те же годы итальянец Галилео занимался шлифовкой линз. В 1609 году он представил обществу новую разработку - телескоп с трехкратным увеличением. Телескоп Галилея имел более высокое качество изображения, чем трубы Липперсхея. Именно детище итальянского ученого получило название «телескоп».

В семнадцатом веке телескопы изготавливались голландскими учеными, но они имели низкое качество изображения. И только Галилею удалось разработать такую методику шлифовки линз, которая позволила увеличить четко объекты. Он смог получить двадцатикратное увеличение, что было в те времена настоящим прорывом в науке. Исходя из этого невозможно сказать, кто изобрел телескоп: если по официальной версии, то именно Галилео представил миру устройство, которое он назвал телескопом, а если смотреть по версии разработки оптического прибора для увеличения объектов, то первым был Липперсхей.

Первые наблюдения за небом

После появления первого телескопа были сделаны уникальные открытия. Галилео применил свою разработку для отслеживания небесных тел. Он первым увидел и зарисовал лунные кратеры, пятна на Солнце, а также рассмотрел звезды Млечного Пути, спутники Юпитера. Телескоп Галилея дал возможность увидеть кольца у Сатурна. К сведению, в мире до сих пор есть телескоп, работающий по тому же принципу, что и устройство Галилея. Он находится в Йоркской обсерватории. Аппарат имеет диаметр 102 сантиметра и исправно служит ученым для отслеживания небесных тел.

Современные телескопы

На протяжении столетий ученые постоянно изменяли устройства телескопов, разрабатывали новые модели, улучшали кратность увеличения. В результате удалось создать малые и большие телескопы, имеющие разное назначение.

Малые обычно применяют для домашних наблюдений за космическими объектами, а также для наблюдения за близкими космическими телами. Большие аппараты позволяют рассмотреть и сделать снимки небесных тел, расположенных в тысячах световых лет от Земли.

Виды телескопов

Существует несколько разновидностей телескопов:

  1. Зеркальные.
  2. Линзовые.
  3. Катадиоптрические.

К линзовым относят рефракторы Галилея. К зеркальным относят устройства рефлекторного типа. А что такое телескоп катадиоптрический? Это уникальная современная разработка, в которой сочетается линзовый и зеркальный прибор.

Линзовые телескопы

Телескопы в астрономии играют важную роль: они позволяют видеть кометы, планеты, звезды и другие космические объекты. Одними из первых разработок были линзовые аппараты.

В каждом телескопе есть линза. Это главная деталь любого устройства. Она преломляет лучи света и собирает их в точке, под названием фокус. Именно в ней строится изображение объекта. Чтобы рассмотреть картинку, используют окуляр.

Линза размещается таким образом, чтобы окуляр и фокус совпадали. В современных моделях для удобного наблюдения в телескоп применяют подвижные окуляры. Они помогают настроить резкость изображения.

Все телескопы обладают аберрацией - искажением рассматриваемого объекта. Линзовые телескопы имеют несколько искажений: хроматическую (искажаются красные и синие лучи) и сферическую аберрацию.

Зеркальные модели

Зеркальные телескопы называют рефлекторами. На них устанавливается сферическое зеркало, которое собирает световой пучок и отражает его с помощью зеркала на окуляр. Для зеркальных моделей не характерна хроматическая аберрация, так как свет не преломляется. Однако у зеркальных приборов выражена сферическая аберрация, которая ограничивает поле зрения телескопа.

В графических телескопах используются сложные конструкции, зеркала со сложными поверхностями, отличающиеся от сферических.

Несмотря на сложность конструкции, зеркальные модели легче разрабатывать, чем линзовые аналоги. Поэтому данный вид более распространен. Самый большой диаметр телескопа зеркального типа составляет более семнадцати метров. На территории России самый большой аппарат имеет диаметр шесть метров. На протяжении многих лет он считался самым большим в мире.

Характеристики телескопов

Многие покупают оптические аппараты для наблюдений за космическими телами. При выборе устройства важно знать не только то, что такое телескоп, но и то, какими характеристиками он обладает.

  1. Увеличение. Фокусное расстояние окуляра и объекта - это кратность увеличения телескопа. Если фокусное расстояние объектива два метра, а у окуляра - пять сантиметров, то такое устройство будет обладать сорокакратным увеличением. Если окуляр заменить, то увеличение будет другим.
  2. Разрешение. Как известно, свету свойственны преломление и дифракция. В идеале любое изображение звезды выглядит как диск с несколькими концентрическими кольцами, называемыми дифракционными. Размеры дисков ограничены только возможностями телескопа.

Телескопы без глаз

А что такое телескоп без глаза, для чего его используют? Как известно, у каждого человека глаза воспринимают изображение по-разному. Один глаз может видеть больше, а другой - меньше. Чтобы ученые смогли рассмотреть все, что им необходимо увидеть, применяют телескопы без глаз. Эти аппараты передают картинку на экраны мониторов, через которые каждый видит изображение именно таким, какое оно есть, без искажений. Для малых телескопов с этой целью разработаны камеры, подключаемые к аппаратам и снимающие небо.

Самыми современными методами видения космоса стало использование ПЗС камер. Это особые светочувствительные микросхемы, которые собирают информацию с телескопа и передают ее на ЭВМ. Получаемые с них данные настолько четкие, что невозможно представить, какими еще устройствами можно было бы получить такие сведения. Ведь глаз людей не может различать все оттенки с такой высокой четкостью, как это делают современные камеры.

Для измерения расстояний между звездами и другими объектами пользуются специальными приборами - спектрографами. Их подключают к телескопам.

Современный астрономический телескоп - это не одно устройство, а сразу несколько. Получаемые данные с нескольких аппаратов обрабатываются и выводятся на мониторы в виде изображений. Причем после обработки ученые получают изображения очень высокой четкости. Увидеть глазами в телескоп такие же четкие изображения космоса невозможно.

Радиотелескопы

Астрономы для своих научных разработок используют огромные радиотелескопы. Чаще всего они выглядят как огромные металлические чаши с параболической формой. Антенны собирают получаемый сигнал и обрабатывают получаемую информацию в изображения. Радиотелескопы могут принимать только одну волну сигналов.

Инфракрасные модели

Ярким примером инфракрасного телескопа является аппарат имени Хаббла, хотя он может быть одновременно и оптическим. Во многом конструкция инфракрасных телескопов схожа с конструкцией оптических зеркальных моделей. Тепловые лучи отражаются обычным телескопическим объективом и фокусируются в одной точке, где находится прибор, измеряющий тепло. Полученные тепловые лучи пропускаются через тепловые фильтры. Только после этого происходит фотографирование.

Ультрафиолетовые телескопы

При фотографировании фотопленка может засвечиваться ультрафиолетовыми лучами. В некоторой части ультрафиолетового диапазона возможно принимать изображения без обработки и засвечивания. А в некоторых случаях необходимо, чтобы лучи света прошли через специальную конструкцию - фильтр. Их использование помогает выделить излучение определенных участков.

Существуют и другие виды телескопов, каждый из которых имеет свое назначение и особые характеристики. Это такие модели, как рентгеновские, гамма-телескопы. По своему назначению все существующие модели можно разделить на любительские и профессиональные. И это далеко не вся классификация аппаратов для отслеживания небесных тел.

Небо манит нас, когда мы смотрим на его просторы. Что же скрывается за облаками, и что находится в его непроглядной темноте? На эти вопросы, разумеется, отчасти мы смогли получить представления с помощью телескопа. Бесспорно, это уникальное устройство, которое подарило нам великолепную картину космоса. И несомненно, приблизило наше понимание небесного пространства.

Известно, что первый телескоп создал Галилео Галилей. Хотя немногие знают, что он использовал ранние открытия других учёных. Например, изобретение зрительной трубы для мореплавания.
Кроме того, мастера по стеклу уже создали очки. Вдобавок, использовались линзы. И эффект преломления и увеличения стекла был более или менее изучен.


Первый телескоп Галилея

Безусловно, Галилео добился значительного результата в исследовании данной области. К тому же, он собрал и усовершенствовал все наработки. И в итоге, разработал и представил первый в мире телескоп. По правде, он имел лишь трёхкратное увеличение. Но отличался высоким на тот момент качеством изображения.

Кстати, именно Галилей назвал свой разработанный объект телескопом.
В дальнейшем, учёный не остановился на достигнутом. Он усовершенствовал прибор до двадцати кратного увеличения картинки.
Важно, что Галилео не только разработал телескоп. Более того, он первым использовал его для исследования космоса. Кроме того, он сделал массу астрономических открытий.


Характеристика телескопов

Телескоп состоит из трубы, которая стоит на специальной монтировке. Её оснащают осями для нацеливания на наблюдаемый объект.
Кроме того, у оптического устройства имеется окуляр и объектив. Причём задняя плоскость объектива перпендикулярна оптической оси, и соединена с передней поверхностью окуляра. Которая, между прочим, аналогична объективной по отношению к оптической оси.


Стоит отметить, что для фокусировки используется особое устройство.
Основными характеристиками телескопов являются увеличение и разрешение.
Увеличение изображения зависит от фокусного расстояния окуляра и объекта.
С разрешением связано свойство преломления света. Таким образом, размер наблюдаемого объекта ограничен разрешением телескопа.

Виды телескопов в астрономии

Разновидности телескопов в связаны с различными способами построения. Если точнее, то применением различных инструментов в качестве объектива. Кроме того, имеет значение для какой цели нужно устройство.
На сегодняшний день существует несколько основных типов телескопов в астрономии. В зависимости от светособирающего компонента они бывают линзовые, зеркальные и комбинированные.

Линзовые телескопы (диоптрические)

По другому, их называют рефракторами. Это самые первые телескопы. В них свет собирается линзой, которая с двух сторон ограничена сферой. Поэтому она считается двояковыпуклой. К тому же, линза является объективом.
Что интересно, можно использовать не просто линзу, а целую систему из них.


Стоит заметить, что выпуклые линзы преломляют лучи света и собирают их в фокус. А в нём, в свою очередь, строится изображение. Для того, чтобы его рассмотреть применяют окуляр.
Что важно, линза устанавливается так, чтобы фокус и окуляр совпадали.
Кстати, Галилео изобрёл именно рефрактор. Но современные приборы состоят из двух линз. Одна из них собирает свет, а другая рассеивает. Что позволяет уменьшить отклонения и погрешности.

Зеркальные телескопы (катаптрические)

Также их называют рефлекторы. В отличие от линзового типа, объектив у них это вогнутое зеркало. Оно собирает свет звезды в одной точке и отражает его на окуляр. При этом погрешности минимальны, а разложение света на лучи отсутствует полностью. Но использование рефлектора ограничивает поле зрения наблюдателя.
Что интересно, зеркальные телескопы самые распространённые в мире. Потому как разработка их намного легче, чем, например, линзовых приборов.


Катадиоптрические телескопы (комбинированные)

Это зеркально-линзовые приборы. В них для получения изображения применяют и линзы, и зеркала.

В свою очередь, их разделили на два подвида:
1) телескопы Шмидт-Кассегрена-в них в самом центре кривизны зеркала установлена диафрагма. Тем самым происходит исключение сферических нарушений и отклонений. Но увеличивается поле зрения и качество изображения.
2) телескопы Максутова-Кассегрена-в районе фокальной плоскости установлена плоско-выпуклая линза. В результате предотвращается кривизна поля и сферическое отклонение.


Стоит отметить, что в современной астрономии чаще применяются именно комбинированный вид приборов. В результате смешения двух разных элементов для собирания света они позволяют получать более качественные данные.

Такие устройства способны принимать исключительно одну волну сигналов. С помощью антенн происходит передача сигналов и обработка их в изображения.
Радиотелескопы используются астрономами для научных исследований.


Инфракрасные модели телескопов

Они по своей конструкции очень схожи с оптическими зеркальными телескопами. Принцип получения изображения практически аналогичен. Лучи отражаются объективом и собираются в одной точке. Далее специальный прибор измеряет тепло и фотографирует полученный результат.


Современные телескопы

Телескоп это оптический прибор для наблюдений. Изобрели его почти полвека назад. На протяжении этого времени, учёные меняли и усовершенствовали устройство. Действительно, создано много новых моделей. В отличие от первых они имеют повышенное качество и увеличение изображения.

В нашем веке технологий используются компьютерные телескопы. Соответственно, они оснащены специальными программами. Что важно, современный прототип учитывает, что у каждого человека восприятие глаз разное. Для высокой точности картинку передают на монитор. Таким образом изображение воспринимается таким, какое оно на самом деле есть. Вдобавок, данный способ наблюдения исключает любые искажения.


Кроме того, учёные нашего поколения применяют одновременно не одно устройство, а несколько. Более того, к телескопу подключают уникальные камеры, которые передают информацию на компьютер. Это позволяет получать чёткие и точные сведения. Которые, разумеется, используют для изучения и .

Что интересно, сейчас телескопы не просто приборы для наблюдения. Но также устройства для измерения расстояний между космическими объектами. Для этой функции к ним подключают спектрографы. И взаимодействие этих приборов предоставляет конкретные данные.

Другая классификация

Есть еще и другие виды телескопов. Но используются они по своему отдельному назначению. Например, рентгеновские и гамма-телескопы. Или ультрафиолетовые устройства, которые фильтруют картинку без обработки и засвечивания.
Кроме того, можно разделить приборы на профессиональные и любительские. Первые используются учёными и астрономами. Очевидно, что вторые подходят для домашнего применения.


Как выбрать телескоп для любителей астрономии

Выбор телескопа для любителей астрономии основывается на том, что же вы хотите наблюдать. В принципе, выше описаны виды и характеристики приборов. Вам просто нужно выбрать какой больше нравится. Лучше, на мой взгляд остановиться на линзовом, либо комбинированном виде. Но выбирать, разумеется, вам.


По данным интернета, лучшие любительские телескопы представлены фирмами: Celestron, Bresser и Veber.

Телескопом сотни лет изучают жизнь планет

Создание и разработка телескопа, на самом деле, позволили сделать огромный шаг в исследовании космоса. Вероятно, всё, что мы знаем сформировалось с помощью этого прибора. Хотя, конечно, не стоит приуменьшать саму деятельность учёных.
Сегодня мы рассмотрели некоторые типы телескопов и их характеристики. Однозначно, виден прогресс технологий. И как результат, мы узнали множество интересного о космических объектах и самом космосе. Кроме того, мы можем любоваться прекрасным небом и знакомиться с ним благодаря этому чудесному изобретению.