Меню
Бесплатно
Главная  /  Лечение  /  Что образует аппарат гольджи. Комплекс Гольджи: описание

Что образует аппарат гольджи. Комплекс Гольджи: описание

Структуру, известную теперь как аппарат Гольджи, впервые обнаружил в клетках в 1898 г. Камилло Гольджи, применивший в своих наблюдениях особую методику окрашивания. Однако подробно исследовать ее удалось только с помощью электронного микроскопа. Аппарат Гольджи содержится почти во всех эукариотических клетках и представляет собой стопку уплощенных мембранных мешочков, так называемых цистерн, и связанную с ними систему пузырьков, называемых пузырьками Гольджи. В растительных клетках обнаруживается ряд отдельных стопок, называемых диктиосомами (рис. 7.6). В животных клетках чаще можно встретить одну большую стопку. Трехмерную структуру аппарата Гольджи трудно выявить при изучении ультратонких срезов, однако наблюдения с применением негативного окрашивания позволяют предположить, что вокруг центральной стопки формируется сложная система взаимосвязанных трубочек (рис. 7.19).

Рис. 7.19. А. Трехмерная структура аппарата Гольджи. Б. Микрофотография, полученная с помощью трансмиссионного электронного микроскопа, на которой видны два аппарата Гольджи: слева - диктиосома в вертикальном разрезе, справа - самая верхняя цистерна, какой она видна сверху, × 50000

На одном конце стопки постоянно образуются новые цистерны путем слияния пузырьков, отпочковывающихся, вероятно, от гладкого ЭР. Эта "наружная", или формирующая, сторона стопки выпуклая, тогда как другая, "внутренняя", где завершается созревание и где цистерны вновь распадаются на пузырьки, имеет вогнутую форму. Стопка состоит из многих цистерн, которые, как полагают, постепенно перемещаются от наружной стороны к внутренней.

Функцию аппарата Гольджи составляют транспорт веществ и химическая модификация поступающих в него клеточных продуктов. Функция эта особенно важна и заметна в секреторных клетках, хорошим примером которых могут служить ацинарные клетки поджелудочной железы. Эти клетки секретируют пищеварительные ферменты панкреатического сока в выводной проток железы, через который они поступают в двенадцатиперстную кишку. На рис. 7.20, А представлена электронная микрофотография такой клетки, а на рис. 120, Б - схема данного секреторного пути.


Рис. 7.20. А Электронная микрофотография ацинуса - группы ацинарных клеток поджелудочной железы, × 10400. 1 - ядро; 2 - митохондрия; 3 - аппарат Гольджи; 4 - секреторные гранулы; 5 - шероховатый эндоплазматический ретикулум

Отдельные этапы этого пути выявляют при помощи радиоактивно меченных аминокислот, прослеживая их включение в белки, а затем передвижение по различным клеточным органеллам. Для этого образцы ткани гомогенизируют через разные промежутки времени после введения аминокислот, разделяют клеточные органеллы центрифугированием и выясняют, в каких органеллах доля этих аминокислот всего выше. После концентрирования в аппарате Гольджи белок в пузырьках Гольджи переносится к плазматической мембране. Конечным этапом является секреция неактивного фермента посредством процесса, обратного пиноцитозу. Пищеварительные ферменты, выделяемые поджелудочной железой, синтезируются в неактивной форме, чтобы они не могли разрушать клетки, в которых они образуются. Фермент в неактивной форме называется проферментом или зимогеном . Примером может служить трипсиноген, превращающийся в активный трипсин в двенадцатиперстной кишке.

Обычно у белков, поступающих в аппарат Гольджи из ЭР, имеются короткие олигосахаридные цепи, т. е. они представляют собой гликопротеины (подобно мембранным белкам, изображенным на рис. 7.11). Такие углеводные "антенны" в аппарате Гольджи могут претерпевать модификацию, превращающую их в маркеры, с помощью которых белок направляется строго по своему назначению. Однако, каким образом аппарат Гольджи сортирует и распределяет молекулы, в точности не известно. Присоединение гликозильных групп к белкам, в результате чего возникают гликопротеины, носит название гликозилирование ; гликозилированием сопровождается образование многих белков.

Аппарат Гольджи участвует иногда и в секреции углеводов, например при синтезе материала клеточных стенок у растений. Рис. 7.21 свидетельствует об усиленной его активности в области "клеточной пластинки", т. е. в той области, где после деления ядра (митоза или мейоза) между двумя только что образовавшимися дочерними ядрами закладывается новая клеточная стенка.


Рис. 7.21. Электронная микрофотография, на которой видна клеточная пластинка, образующаяся в растительной клетке во время телофазы митоза, × 15000

Пузырьки Гольджи направляются к нужному месту на клеточной пластинке при помощи микротрубочек (их мы опишем позднее) и здесь сливаются. Их мембраны становятся частью новых плазматических мембран дочерних клеток, а их содержимое используется для построения срединной пластинки и новых клеточных стенок. Методом радиоавтографии было показано, что радиоактивно меченная глюкоза, поглощенная делящимися растительными клетками, сначала появляется в аппарате Гольджи, а позднее (в пузырьках Гольджи) включается в полисахариды, предназначенные для построения клеточных стенок. По-видимому, это полисахариды матрикса клеточных стенок, а не целлюлоза, которая в пузырьках Гольджи не синтезируется.

Два рассмотренных нами примера - секреторная активность ацинарных клеток поджелудочной железы и образование новых клеточных стенок в делящихся растительных клетках - показывают, каким образом многие клеточные органеллы могут объединяться для выполнения какой-нибудь одной функции.

Аппаратом Гольджи секретируется важный гликопротеин муцин , в растворе образующий слизь. Он выделяется бокаловидными клетками, находящимися в толще эпителия слизистой оболочки кишечника и дыхательных путей. В клетках кончика корня имеется аппарат Гольджи, секретирующий богатую мукополисахаридами слизь, которая смачивает кончик корня и облегчает его проникновение в почву. В железах листьев насекомоядных растений - росянки (Drosera) и жирянки (Pinguiculd) - аппарат Гольджи секретирует клейкую слизь и ферменты, с помощью которых эти растения ловят и переваривают добычу. Во многих клетках аппарат Гольджи участвует в секреции слизи, воска, камеди и растительного клея.

Иногда аппарат Гольджи принимает участие и в транспорте липидов. При переваривании липиды расщепляются и всасываются в тонком кишечнике в виде жирных кислот и глицерола. Затем в гладком ЭР липиды ресинтезируются. Они покрываются белковой оболочкой и через аппарат Гольджи транспортируются к плазматической мембране, где им предстоит покинуть клетку. Пройдя через плазматическую мембрану, они поступают преимущественно в лимфатическую систему.

Помимо перечисленных выше функций, связанных с секрецией белков, гликопротеинов, углеводов и липидов, аппарат Гольджи выполняет еще одну функцию - в нем формируются лизосомы, к описанию которых мы теперь перейдем.

Комплекс Гольджи был обнаружен в 1898-м году. Эта мембранная структура предназначена для выведения соединений, которые синтезированы в эндоплазматическом ретикулуме. Далее подробнее познакомимся с этой системой.

Комплекс Гольджи: строение

Аппарат представляет собой стопку мембранных дискообразных цистерн. Эти мешочки несколько расширены к краям. С цистернами связана система пузырьков Гольджи. В животных клетках присутствует одна большая либо несколько стопок, которые соединены трубками, в растительных клетках обнаруживаются диктиосомы (несколько отдельных стопок). Комплекс Гольджи включает в себя три отдела. Они окружены мембранными пузырьками:

  • ближний к ядру цис-отдел;
  • медиальный;
  • транс отдел (наиболее удаленный от ядра).

Данные системы отличаются ферментным набором. В цис-отделе первый мешочек именуется "цистерной спасения". С ее помощью рецепторы, которые поступают из эндоплазматической промежуточной сети, движутся обратно. Ферментом цис-отдела называют фосфогликозидазу. Она присоединяет к маннозе (углеводу) фосфат. В медиальном отделе располагается два фермента. Это, в частности, меннадиаза и N-ацетилглюкозаминтрансфераза. Последняя присоединяет гликозамины. Ферменты транс-отдела: пептидаза (она осуществляет протеолиз) и трансфераза (с ее помощью происходит переброс хим. групп).

Комплекс Гольджи: функции

Данная структура обеспечивает разделение белков на следующие три потока:

  1. Лизосомальный. По нему гликозированные белки проникают в цис-отдел аппарата Гольджи. Часть из них фосфолитируется. В результате формируется манноза-6-фосфат - маркетлизосомальных ферментов. В дальнейшем данные фосфолированные белки поступят в лизосомы, а не будут модифицироваться.
  2. Конститутивный экзоцитоз (секреция). В данный поток включены белки и липиды, которые стали компонентами поверхностного клеточного аппарата, гликокаликса в том числе. Также здесь могут присутствовать соединения, которые входят в состав внеклеточного матрикса.
  3. Индуцируемая секреция. В этот поток проникают белки, функционирующие за пределами клетки, поверхностного аппарата, во внутренней среде в организме. Индуцируемая секреция характерна для секреторных клеток.

Комплекс Гольджи принимает участие в формировании слизистого секрета - мукополисахаридов (гликозамингликанов). Аппарат также образует углеводные компоненты гликокаликса. В основном они представлены гликолипидами. Система также обеспечивает сульфатирование белковых и углеводных элементов. Комплекс Гольджи участвует в частичном протеолизе белков. В некоторых случаях благодаря этому соединение из неактивной переходит в активную форму (например, проинсулин трансформируется в инсулин).

Перемещение соединений из эндоплазматической сети (ЭПС)

Комплекс асимметричен. Расположенные ближе к ядру клетки включают в себя самые незрелые белки. К этим мешочкам непрерывно присоединяются везикулы - мембранные пузырьки. Они отпочковываются от эндоплазматического гранулярного ретикулума. На его мембранах проходит процесс синтеза белков рибосомами. Транспорт соединений из эндоплазматической сети в комплекс Гольджи осуществляется неизбирательно. При этом неправильно либо не полностью свернутые белки продолжают оставаться в ЭПС. Обратное перемещение соединений в эндоплазматическую сеть требует наличия особой сигнальной последовательности и становится возможным благодаря связыванию этих веществ с мембранными рецепторами в цис-отделе.

Модификация белков

В цистернах комплекса происходит созревание соединений, которые предназначены для секреции, трансмембранных, лизосомных и прочих веществ. Эти белки последовательно по цистернам перемещаются в органеллы. В них начинаются их модификации - фосфолирование и гликозирование. В ходе первого процесса к белкам присоединяется остаток ортофосфорной кислоты. При О-гликозировании происходит пристыковка сложных сахаров посредством атома кислорода. В разных цистернах содержатся различные каталитические ферменты. Следовательно, с белками, созревающими в них, происходят последовательно различные процессы. Несомненно, такое ступенчатое явление должно контролироваться. В качестве своеобразного "знака качества" выступают полисахаридные остатки (маннозные, преимущественно). Они маркируют созревающие белки. Дальнейшее перемещение по цистернам соединений не до конца понятно науке, при том, что резистентные вещества остаются в меньшей либо большей степени ассоциированы с одним мешочком.

Транспорт белков из аппарата

От транс-отдела комплекса отпочковываются пузырьки. В них содержатся полностью зрелые белковые соединения. Основной функцией комплекса считается сортировка белков, проходящих через него. В аппарате осуществляется формирование "трехнаправленного потока белков" - созревание и транспорт:

  1. Соединений плазматической мембраны.
  2. Секретов.
  3. Лизосомных ферментов.

Посредством везикулярного транспорта белки, прошедшие сквозь комплекс Гольджи, доставляются в те или иные участки в соответствии с "метками". Данный процесс также не до конца понятен науке. Установлено, что транспорт белков из комплекса требуют участия особых мембранных рецепторов. Они распознают соединение и обеспечивают селективную стыковку пузырька и той либо иной органеллы.

Формирование лизосом

Через аппарат проходит множество гидролитических ферментов. Добавление метки, о которой говорилось выше, осуществляется с участием двух ферментов. Специфическое распознавание лизосомальных гидролаз по элементам их третичной структуры и присоединение N -ацетилглюкозаминфосфата осуществляется N-ацетилглюкозаминфосфотрансферазой. Фосфогликозид - второй фермент - производит отщепление N-ацетилглюкозамина, в результате чего формируется М6Ф-метка. Она, в свою очередь, распознается белком-рецептором. При его помощи осуществляется поступление гидролаз в везикулы и оправка их в лизосомы. В них в условиях кислой среды происходит отщепление фосфата от зрелой гидролазы. При наличии нарушений в деятельности N-ацетилглюкозаминфосфотрансферазыв связи с мутациями либо по причине генетических дефектов в рецепторе М6Ф, все лизосомные ферменты доставляются по умолчанию к наружной мембране. Затем они секретируются во внеклеточные условия. Установлено также, что некоторая часть М6Ф-рецепторов также транспортируются на наружную мембрану. Они осуществляют возврат случайно попавших лизосомных ферментов из внешней среды внутрь клетки в ходе эндоцитоза.

Транспорт веществ на наружную мембрану

Обычно еще на этапе синтеза белковые соединения наружной мембраны своими гидрофобными участками встраиваются в стенку эндоплазматической сети. Далее они доставляются в комплекс Гольджи. Оттуда они транспортируются к клеточной поверхности. В процессе слияния плазмалеммы и везикулы такие соединения не выделяются во внешнюю среду.

Секреция

Почти все вырабатываемые соединения в клетке (и белковой, и небелковой природы) проходят сквозь комплекс Гольджи. Там они складываются в секреторные пузырьки. У растений с участием диктиосом, таким образом, происходит выработка материала

Клетка — цельная система

Живая клетка — уникальная совершенная мельчайшая единица организма, она устроена так, чтобы максимально эффективно использовать кислород и питательные вещества, выполняя свои функции. Жизненно важными для клетки органеллами являются ядро, рибосомы, митохондрии, эндоплазматический ретикулум, аппарат Гольджи. Вот о последнем и поговорим подробнее.

Что это такое

Эта мембранная органелла является комплексом структур, которые выводят из клетки синтезированные в ней вещества. Чаще всего она располагается вблизи от наружной клеточной мембраны.

Аппарат Гольджи: строение

Он состоит из образованных мембранами “мешочков”, называемых цистернами. Последние имеют вытянутую форму, слегка сплющены посередине и расширены по краям. Также в комплексе имеются круглые пузырьки Гольджи - мелкие мембранные структуры. Цистерны “сложены” стопочками, которые называются диктиосомы. Аппарат Гольджи содержит различные типы “мешочков”, весь комплекс делят на некоторые части по степени удаленности от ядра. Различают их три: цис-отдел (ближе к ядру), срединный, и транс-отдел - самый дальний от ядра. Они характеризуются отличающимся составом ферментов, а следовательно, и выполняемой работой. В строении диктиосом есть одна особенность: они полярны, то есть ближайший к ядру отдел только принимает пузырьки, идущие от эндоплазматического ретикулума. Часть “стопки”, обращенная к мембране клетки, только формирует и отдает их.

Аппарат Гольджи: функции

Основными выполняемыми задачами являются сортировка белков, липидов, слизистых секретов и их выведение. Также через него проходят выделяемые клеткой небелковые вещества, углеводные компоненты наружной мембраны. При этом аппарат Гольджи вовсе не является индифферентным посредником, который просто “передает” вещества, в нем идут процессы активизации и модификации (“созревания”):

  1. Сортировка веществ, транспорт белков. Распределение белковых веществ происходит на три потока: для мембраны самой клетки, экспортные, лизосомальные ферменты. В первый поток помимо белков включаются и жиры. Интересный факт, что любые экспортные вещества переносятся внутри пузырьков. А вот предназначенные для мембраны клетки белки встраиваются в мембрану транспортного пузырька и перемещаются таким образом.
  2. Выделение всех продуктов, произведенных в клетке. Аппарат Гольджи “упаковывает” всю продукцию, как белковую, так и иной природы, в секреторные пузырьки. Все вещества выделяются наружу путем сложного взаимодействия последних с клеточной мембраной.
  3. Синтез полисахаридов (гликозаминогликанов и компонентов гликокаликса клеточной стенки).
  4. Сульфатирование, гликозилирование жиров и белков, частичный протеолиз последних (необходимый для перевода их из неактивной формы в активную), — это всё процессы “созревания” белков, нужные для их будущей полноценной работы.

В заключение

Рассмотрев то, как устроен и работает комплекс Гольджи, убеждаемся, что он является важнейшей и неотъемлемой частью любой клетки (особенно секреторных). Клетка, не продуцирующая веществ на экспорт, также не может обойтись без этой органеллы, поскольку от нее зависит “укомплектованность” клеточной мембраны и другие важные внутренние процессы жизнедеятельности.

Структуру, известную сегодня как комплекс или аппарат Гольджи (АГ) впервые обнаружил в 1898 году итальянский ученый Камилло Гольджи

Подробно изучить строение комплекса Гольджи удалось значительно позже с помощью электронного микроскопа.

АГ представляет собой стопки уплощенных «цистерн» с расширенными краями. С ними связана система мелких одномембранных пузырьков (пузырьки Гольджи). Каждая стопка обычно состоит из 4-х–6-ти «цистерн», является структурно-функциональной единицей аппарата Гольджи и называется диктиосомой. Число диктиосом в клетке колеблется от одной до нескольких сотен.

Аппарат Гольджи обычно расположен около клеточного ядра, вблизи ЭПС (в животных клетках часто вблизи клеточного центра).

Комплекс Гольджи

Слева – в клетке, среди других органоидов.

Справа – комплекс Гольджи с отделяющимися от него мембранными пузырьками

Все вещества, синтезированные на мембранах ЭПС переносятся в комплекс Гольджи в мембранных пузырьках , которые отпочковываются от ЭПС и сливаются затем с комплексом Гольджи. Поступившие органические вещества из ЭПС претерпевают дальнейшие биохимические превращения, накапливаются, упаковываются в мембранные пузырьки и доставляются к тем местам клетки, где они необходимы. Они участвуют в достройке клеточной мембраны или выделяются наружу (секретируются ) из клетки.

Функции аппарата Гольджи:

1 Участие в накоплении продуктов, синтезированных в эндоплазматической сети, в их химической перестройке и созревании. В цистернах комплекса Гольджи происходит синтез полисахаридов, их комплексирование с белковыми молекулами.

2) Секреторная - формирование готовых секреторных продуктов, которые выводятся за пределы клетки путем экзоцитоза.

3) Обновление клеточных мембран, в том числе и участков плазмолеммы, а также замещение дефектов плазмолеммы в процессе секреторной деятельности клетки.

4) Место образования лизосом.

5) Транспорт веществ



Лизосомы

Лизосома была открыта в 1949 г. К. де Дювом (Нобелевская премия за 1974 г.).

Лизосомы - одномембранные органоиды. Представляют собой мелкие пузырьки (диаметр от 0,2 до 0,8 мкм), содержащие набор гидролитических ферментов - гидролаз. Лизосома может содержать от 20 до 60 различных видов гидролитических ферментов (протеиназ, нуклеаз, глюкозидаз, фосфатаз, липаз и др.), расщепляющих различные биополимеры. Расщепление веществ с помощью ферментов называют лизисом (лизис-распад).

Ферменты лизосом синтезируются на шероховатой ЭПС, перемещаются в аппарат Гольджи, где происходит их модификация и упаковка в мембранные пузырьки, которые после отделения от аппарата Гольджи становятся собственно лизосомами. (Лизосомы иногда называют «желудками» клетки)

Лизосома – мембранный пузырек, содержащий гидролитические ферменты

Функции лизосом:

1. Расщепление веществ, поглощенных в результате фагоцитоза и пиноцитоза. Биополимеры расщепляются до мономеров, которые поступают в клетку и используются на ее нужды. Например, они могут быть использованы для синтеза новых органических веществ или могут подвергаться дальнейшему расщеплению для получения энергии.

2. Разрушают старые, поврежденные, избыточные органоиды. Разрушение органоидов может происходить и во время голодания клетки.

3. Осуществляют автолиз (саморазрушение) клетки (разжижение тканей в зоне воспаления, разрушение клеток хряща в процессе формирования костной ткани и др.).

Автолиз - это саморазрушение клеток, возникающее вследствие высвобождения содержимого лизосом внутри клетки. Благодаря этому лизосомы в шутку называют «орудиями самоубийства». Автолиз представляет собой нормальное явление онтогенеза, он может распространяться как на отдельные клетки, так и на всю ткань или орган, как это происходит при резорбции хвоста головастика во время метаморфоза, т. е. при превращении головастика в лягушку

Эндоплазматическая сеть, аппарат Гольджи и лизосомы образуют единую вакуолярную систему клетки, отдельные элементы которой могут переходить друг в друга при перестройке и изменении функции мембран.

Митохондрии

Строение митохондрии:
1 - наружная мембрана;
2 - внутренняя мембрана; 3 - матрикс; 4 - криста; 5 - мультиферментная система; 6 - кольцевая ДНК.

По форме митохондрии могут быть палочковидными, округлыми, спиральными, чашевидными, разветвленными. Длина митохондрий колеблется в пределах от 1,5 до 10 мкм, диаметр - от 0,25 до 1,00 мкм. Количество митохондрий в клетке может достигать нескольких тысяч и зависит от метаболической активности клетки.

Митохондрия ограничена двумя мембранами . Наружная мембрана митохондрий гладкая, внутренняя образует многочисленные складки - кристы. Кристы увеличивают площадь поверхности внутренней мембраны. Число крист в митохондриях может меняться в зависимости от потребности клетки в энергии. Именно на внутренней мембране сосредоточены многочисленные ферментные комплексы, участвующие в синтезе аденозинтрифосфата (АТФ). Здесь энергия химических связей превращается в богатые энергией (макроэргические) связи АТФ . Кроме того, в митохондриях проходит расщепление жирных кислот и углеводов с высвобождением энергии, которая накапливается и используется на процессы роста и синтеза .Внутренняя среда данных органелл называется матриксом . Она содержит кольцевые ДНК и РНК, мелкие рибосомы. Интересно, что митохондрии - полуавтономные органоиды, поскольку зависят от функционирования клетки, но в то же время могут сохранять определенную самостоятельность. Так, они способны синтезировать собственные белки и ферменты, а также размножаться самостоятельно (митохондрии содержат собственную цепочку ДНК, в которой сосредоточено до 2% ДНК самой клетки).

Функции митохондрий:

1. Преобразование энергии химических связей в макроэргические связи АТФ (митохондрии - "энергетические станции" клетки).

2. Участвуют в процессах клеточного дыхания - кислородное расщепление органических веществ.

Рибосомы

Строение рибосомы:
1 - большая субъединица; 2 - малая субъединица.

Рибосомы - немембранные органоиды, диаметр примерно 20 нм. Рибосомы состоят из двух фрагментов - большой и малой субъединиц. Химический состав рибосом - белки и рРНК. Молекулы рРНК составляют 50–63% массы рибосомы и образуют ее структурный каркас.

Во время биосинтеза белка рибосомы могут «работать» поодиночке или объединяться в комплексы - полирибосомы (полисомы) . В таких комплексах они связаны друг с другом одной молекулой иРНК.

Образуются субъединицы рибосом в ядрышке. Пройдя через поры в ядерной оболочке рибосомы попадают на мембраны эндоплазматической сети (ЭПС).

Функция рибосом: сборка полипептидной цепочки (синтез белковых молекул из аминокислот).

Цитоскелет

Клеточный цитоскелет образуется микротрубочками и микрофиламентами .

Микротрубочки представляют собой цилиндрические образования диаметром 24 нм. Их длина составляет 100 мкм-1 мм. Основной компонент - белок под названием тубулин. Он неспособен к сокращению и может разрушаться под действием колхицина.

Микротрубочки располагаются в гиалоплазме и выполняют следующие функции :

· создают эластичный, но в то же время прочный каркас клетки, который позволяет ей сохранять форму;

· принимают участие в процессе распределения хромосом клетки(образуют веретено деления);

· обеспечивают перемещение органелл;

Микрофиламенты - нити, которые размещаются под плазматической мембраной и состоят из белка актина или миозина. Они могут сокращаться, в результате чего идет перемещение цитоплазмы или выпячивание клеточной мембраны. Кроме того, данные компоненты принимают участие в образовании перетяжки при делении клетки.

Клеточный центр

Клеточный центр - органоид, состоящий из 2 мелких гранул- центриолей и лучистой сферы вокруг них - центросферы. Центриоль - это цилиндрическое тельце длиной 0,3-0,5 мкм и диаметром около 0,15 мкм. Стенки цилиндра состоят из 9 параллельно расположенных трубочек. Центриоли располагаются парами под прямым углом друг к другу. Активная роль клеточного центра обнаруживается при делении клетки. Перед делением клетки центриоли расходятся к противоположным полюсам, и возле каждой из них возникает дочерняя центриоль. Они формируют веретено деления, способствующее равномерному распределению генетического материала между дочерними клетками.

Центриоли относятся к самовоспроизводящимся органоидам цитоплазмы, они возникают в результате дупликации уже имеющихся центриолей.

Функции:

1. Обеспечение равномерного расхождения хромосом к полюсам клетки во время митоза или мейоза.

2. Центр организации цитоскелета.

Органоиды движения

Присутствуют не во всех клетках

К органоидам движения относят реснички, а также жгутики. Это миниатюрные выросты в виде волосков. Жгутик содержит 20 микротрубочек. Его основа размещается в цитоплазме и называется базальным тельцем. Длина жгутика составляет 100 мкм или более. Жгутики, которые имеют всего 10-20 мкм, называются ресничками . При скольжении микротрубочек реснички и жгутики способны колебаться, вызывая движение самой клетки. В цитоплазме могут содержаться сократительные фибриллы, которые называются миофибриллами. Миофибриллы, как правило, размещаются в миоцитах - клетках мышечной ткани, а также в клетках сердца. Они состоят из более мелких волокон (протофибрилл).

У животных и человека реснички они покрывают воздухоносные дыхательные пути и помогают избавляться от мелких твердых частиц, например, от пыли. Кроме этого, существуют еще псевдоножки, которые обеспечивают амебоидное движение и являются элементами многих одноклеточных и клеток животных (к примеру, лейкоцитов).

Функции:

Специфические

Ядро. Хромосомы

Строение и функции ядра

Как правило, эукариотическая клетка имеет одно ядро , но встречаются двуядерные (инфузории) и многоядерные клетки (опалина). Некоторые высоко­специализи­рованные клетки вторично утрачивают ядро (эритроциты млекопитающих, ситовидные трубки покрытосеменных).

Форма ядра - сферическая, эллипсовидная, реже лопастная, бобовидная и др. Диаметр ядра - обычно от 3 до 10 мкм.

Строение ядра:
1 - наруж­ная мембрана; 2 - внут­ренняя мемб­рана; 3 - поры; 4 - ядрышко; 5 - гетеро­хроматин; 6 - эухро­матин.

Ядро отграничено от цитоплазмы двумя мембранами (каждая из них имеет типичное строение). Между мембранами - узкая щель, заполненная полужидким веществом. В некоторых местах мембраны сливаются друг с другом, образуя поры, через которые происходит обмен веществ между ядром и цитоплазмой. Наружная ядерная мембрана со стороны, обращенной в цитоплазму, покрыта рибосомами, придающими ей шероховатость, внутренняя мембрана гладкая. Ядерные мембраны являются частью мембранной системы клетки: выросты наружной ядерной мембраны соединяются с каналами эндоплазматической сети, образуя единую систему сообщающихся каналов.

Кариоплазма (ядерный сок, нуклеоплазма) - внутреннее содержимое ядра, в котором располагаются хроматин и одно или несколько ядрышек . В состав ядерного сока входят различные белки (в том числе ферменты ядра ), свободные нуклеотиды .

Ядрышко представляет собой округлое плотное тельце, погруженное в ядерный сок. Количество ядрышек зависит от функционального состояния ядра и варьирует от 1 до 7 и более. Ядрышки обнаруживаются только в неделящихся ядрах, во время митоза они исчезают . Ядрышко образуется на определенных участках хромосом, несущих информацию о структуре рРНК. Такие участки называются ядрышковым организатором и содержат многочисленные копии генов, кодирующих рРНК. Из рРНК и белков, поступающих из цитоплазмы, формируются субъединицы рибосом. Таким образом, ядрышко представляет собой скопление рРНК и рибосомальных субъединиц на разных этапах их формирования.

Хроматин - внутренние нуклеопротеидные структуры ядра, окрашивающиеся некоторыми красителями и отличающиеся по форме от ядрышка. Хроматин имеет вид глыбок, гранул и нитей. Химический состав хроматина : 1) ДНК (30–45%), 2) гистоновые белки (30–50%), 3) негистоновые белки (4–33%), следовательно, хроматин является дезоксирибонуклеопротеидным комплексом (ДНП) . В зависимости от функционального состояния хроматина различают: гетерохроматин и эухроматин .

Эухроматин - генетически активные, гетерохроматин - генетически неактивные участки хроматина. Эухроматин при световой микроскопии не различим, слабо окрашивается и представляет собой деконденсированные (деспирализованные, раскрученные) участки хроматина. Гетерохроматин под световым микроскопом имеет вид глыбок или гранул, интенсивно окрашивается и представляет собой конденсированные (спирализованные, уплотненные) участки хроматина. Хроматин - форма существования генетического материала в интерфазных клетках. Во время деления клетки (митоз, мейоз) хроматин преобразуется в хромосомы.

Функции ядра:

1. Хранение наследственной информации и передача ее дочерним клеткам в процессе деления.

2. Управление процессом биосинтеза белка.

3. Регуляция деления клетки и процессов развития организма.

4. Место образования субъединиц рибосом.

Хромосомы

Хромосомы - это цитологические палочковидные структуры, представляющие собой конденсированный хроматин и появляющиеся в клетке во время митоза или мейоза. Хромосомы и хроматин - различные формы пространственной организации дезоксирибонуклеопротеидного комплекса, соответствующие разным фазам жизненного цикла клетки. Химический состав хромосом такой же, как и хроматина: 1) ДНК (30–45%), 2) гистоновые белки (30–50%), 3) негистоновые белки (4–33%).

Основу хромосомы составляет одна непрерывная двухцепочечная молекула ДНК; длина ДНК одной хромосомы может достигать нескольких сантиметров. Понятно, что молекула такой длины не может располагаться в клетке в вытянутом виде, а подвергается укладке, приобретая определенную трехмерную структуру, или конформацию.

В настоящее время принята нуклеосомная модель организации хроматина эукариот.

В процессе преобразования хроматина в хромосомы формируются спирали, суперспирали, петли и суперпетли. Поэтому процесс формирования хромосом, который происходит в профазу митоза или профазу 1 мейоза, лучше называть не спирализацией, а конденсацией хромосом.

Хромосомы: 1 - метацентрическая; 2 - субметацентрическая; 3, 4 - акроцентрические .

Строение хромосомы: 5 - центромера; 6 - вторичная перетяжка; 7 - спутник; 8 - хроматиды; 9 - теломеры.

Метафазная хромосома (хромосомы изучаются в метафазу митоза) состоит из двух хроматид. Любая хромосома имеет первичную перетяжку (центромеру) (5), которая делит хромосому на плечи. Некоторые хромосомы имеют вторичную перетяжку (6) и спутник (7). Спутник - участок короткого плеча, отделяемый вторичной перетяжкой. Хромосомы, имеющие спутник, называются спутничными (3). Концы хромосом называются теломерами (9). В зависимости от положения центромеры выделяют: а) метацентрические (равноплечие) (1), б)субметацентрические (умеренно неравноплечие) (2), в) акроцентрические (резко неравноплечие) хромосомы (3, 4).

Соматические клетки содержат диплоидный (двойной - 2n) набор хромосом, половые клетки -гаплоидный (одинарный - n). Диплоидный набор аскариды равен 2, дрозофилы - 8, шимпанзе - 48, речного рака - 196. Хромосомы диплоидного набора разбиваются на пары; хромосомы одной пары имеют одинаковое строение, размеры, набор генов и называются гомологичными .

Функции хромосом: 1) хранение наследственной информации,

2) передача генетического материала от материнской клетки к дочерним.