Меню
Бесплатно
Главная  /  Лечение  /  Методы изготовления фотонных кристаллов. Фотонные кристаллы Оптический контраст по отражению фотонного кристалла

Методы изготовления фотонных кристаллов. Фотонные кристаллы Оптический контраст по отражению фотонного кристалла

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Подобные документы

    Изучение процесса изготовления фотонных кристаллов как материалов, структура которых характеризуется периодическим изменением показателя преломления в пространственных направлениях. Методы получения: самопроизвольное формирование, травление, голография.

    реферат , добавлен 26.01.2011

    История развития представления о жидких кристаллах. Жидкие кристаллы, их виды и основные свойства. Оптическая активность жидких кристаллов и их структурные свойства. Эффект Фредерикса. Физический принцип действия устройств на ЖК. Оптический микрофон.

    учебное пособие , добавлен 14.12.2010

    Краткие сведения о дипольных моментах атомов и молекул. Диэлектрическая проницаемость разреженного газа малой плотности. Разреженный газ из полярных молекул. Модель системы со спонтанной поляризацией. Графическое решение функционального уравнения.

    реферат , добавлен 20.03.2016

    Понятие диэлектрической проницаемости как количественной оценки степени поляризации диэлектриков. Зависимость диэлектрической проницаемости газа от радиуса его молекул и их числа в единице объема, жидких неполярных диэлектриков от температуры и частоты.

    презентация , добавлен 28.07.2013

    Оптическое волокно, как среда передачи данных. Конструкция оптического волокна. Параметры оптических волокон: геометрические, оптические. Оптические волокна на основе фотонных кристаллов. Передача больших потоков информации на значительные расстояния.

    реферат , добавлен 03.03.2004

    Структура кристаллов. Роль, предмет и задачи физики твердого тела. Кристаллические и аморфные тела. Типы кристаллических решеток. Типы связей в кристаллах. Кристаллические структуры твердых тел. Жидкие кристаллы. Дефекты кристаллов.

    лекция , добавлен 13.03.2007

    Рассмотрение истории открытия и направлений применения жидких кристаллов; их классификация на смектические, нематические и холестерические. Изучение оптических, диамагнитных, диэлектрических и акустооптических свойств жидкокристаллических веществ.

    курсовая работа , добавлен 18.06.2012

    Понятие кристаллической (пространственной) решетки. Кристаллическая структура эффекта. Области применения промышленных пьезопленок. Обратный пьезоэлектрический эффект. Использование пьезоэлектрических кристаллов для получения электрической энергии.

    курсовая работа , добавлен 14.04.2014


2


Введение С древних времен человека, нашедшего фотонный кристалл, завораживала в нем особая радужная игра света. Было выяснено, что радужные переливы чешуек и перьев различных животных и насекомых обусловлены существованием на них сверхструктур, получивших за свои отражающие свойства название фотонные кристаллы. Фотонные кристаллы в природе встречаются в/на: минералах (кальцит, лабрадор, опал); на крыльях бабочек; панцирях жуков; глазах некоторых насекомых; водорослях; чушуйках рыб; перьях павлина. 3


Фотонные кристаллы Это материал, структура которого характеризуется периодическим изменением показателя преломления в пространственных направлениях Фотонный кристалл на основе оксида алюминия. M. DEUBEL, G.V. FREYMANN, MARTIN WEGENER, SURESH PEREIRA, KURT BUSCH AND COSTAS M. SOUKOULIS «Direct laser writing of three- dimensional photonic-crystal templates for telecommunications»// Nature materials Vol. 3, P


Немного истории… 1887 г. Релей впервые исследовал распространение электромагнитных волн в периодических структурах, что является аналогом одномерного фотонного кристалла Photonic Crystals - термин был введён в конце 1980-х гг. для обозначения оптического аналога полупроводников. Это искусственные кристаллы, изготовленные из полупрозрачного диэлектрика, в котором упорядоченным образом создаются воздушные «дырки». 5


Фотонные кристаллы – будущее энергетики мира Высокотемпературные фотонные кристаллы могут выступать не только в виде источника энергии, но и как чрезвычайно качественные детекторы (энергетические, химические) и сенсоры. В основе фотонных кристаллов, созданных массачусетскими учеными, лежат вольфрам и тантал. Данное соединение способно удовлетворительно работать при очень высоких температурах. Вплоть до ˚С. Для того, чтобы фотонный кристалл начал преобразовывать один вид энергии в другой, удобный для использования, подойдет любой источник (тепловой, радиоизлучение, жесткая радиация, солнечный свет и т.д.). 6


7


Закон дисперсии электромагнитных волн в фотонном кристалле (схема расширенных зон). В правой части показаны для заданного направления в кристалле соотношения между частотой? и величинами ReQ (сплошные кривые) и ImQ (пунктирная кривая в стоп зоне омега -


Теория фотонных запрещённых зон Лишь в 1987 году, когда Эли Яблонович (Eli Yablonovitch), сотрудник Bell Communications Research (ныне профессор Калифорнийского университета в Лос-Анджелесе), ввел понятие запрещенной зоны для электромагнитных волн (electromagnetic band gap). Для расширения кругозора: Лекция Эли Яблоновича yablonovitch-uc-berkeley/view Лекция Джона Пендри john-pendry-imperial-college/view 9


В природе фотонные кристаллы также встречаются: на крыльях африканских бабочек-парусников, перламутровое покрытие раковин моллюсков, таких, как галиотисы, усики морской мыши и щетинки многощетинкового червя. Фото браслета с опалом. Опал представляет собой природный фотонный кристалл. Его называют «камнем обманчивых надежд» 10


11


Нет нагрева и фотохимического разрушения пигментного по" title="Преимущества фильтров на основе ФК перед абсорбционным механизмом (поглощающим механизмом) для живых организмов: Интерференционная окраска не требует поглощения и диссипации световой энергии, => нет нагрева и фотохимического разрушения пигментного по" class="link_thumb"> 12 Преимущества фильтров на основе ФК перед абсорбционным механизмом (поглощающим механизмом) для живых организмов: Интерференционная окраска не требует поглощения и диссипации световой энергии, => нет нагрева и фотохимического разрушения пигментного покрытия. Живущие в жарком климате бабочки обладают переливчатым рисунком крыльев, а структура фотонного кристалла на поверхности, как оказалось, снижает поглощение света и, следовательно, разогрев крыльев. Морская мышь уже давно применяет на практике фотонные кристаллы. 12 нет нагрева и фотохимического разрушения пигментного по"> нет нагрева и фотохимического разрушения пигментного покрытия. Живущие в жарком климате бабочки обладают переливчатым рисунком крыльев, а структура фотонного кристалла на поверхности, как оказалось, снижает поглощение света и, следовательно, разогрев крыльев. Морская мышь уже давно применяет на практике фотонные кристаллы. 12"> нет нагрева и фотохимического разрушения пигментного по" title="Преимущества фильтров на основе ФК перед абсорбционным механизмом (поглощающим механизмом) для живых организмов: Интерференционная окраска не требует поглощения и диссипации световой энергии, => нет нагрева и фотохимического разрушения пигментного по"> title="Преимущества фильтров на основе ФК перед абсорбционным механизмом (поглощающим механизмом) для живых организмов: Интерференционная окраска не требует поглощения и диссипации световой энергии, => нет нагрева и фотохимического разрушения пигментного по">


Morpho didius бабочка с радужной окраской и микрофотография её крыла, как пример дифракционной биологической микроструктуры. Переливающийся натуральный опал (полудрагоценный камень) и изображение его микроструктуры, состоящей из плотноупакованных сфер диоксида кремния. 13


Классификация фотонных кристаллов 1. Одномерные. В которых коэффициент преломления периодически изменяется в одном пространственном направлении как показано на рисунке. На этом рисунке символом Λ обозначен период изменения коэффициента преломления, и показатели преломления двух материалов (но в общем случае может присутствовать любое число материалов). Такие фотонные кристаллы состоят из параллельных друг другу слоев различных материалов с разными коэффициентами преломления и могут проявлять свои свойства в одном пространственном направлении, перпендикулярном слоям. 14


2. Двумерные. В которых коэффициент преломления периодически изменяется в двух пространственных направлениях как показано на рисунке. На этом рисунке фотонный кристалл создан прямоугольными областями с коэффициентом преломления n1, которые находятся в среде с коэффициентом преломления n2. При этом, области с коэффициентом преломления n1 упорядочены в двумерной кубической решетке. Такие фотонные кристаллы могут проявлять свои свойства в двух пространственных направлениях, и форма областей с коэффициентом преломления n1 не ограничивается прямоугольниками, как на рисунке, а может быть любой (окружности, эллипсы, произвольная и т. д.). Кристаллическая решётка, в которой упорядочены эти области, также может быть другой, а не только кубической, как на приведённом рисунке. 15


3. Трехмерные. В которых коэффициент преломления периодически изменяется в трёх пространственных направлениях. Такие фотонные кристаллы могут проявлять свои свойства в трёх пространственных направлениях, и можно их представить как массив объёмных областей (сфер, кубов и т. д.), упорядоченных в трёхмерной кристаллической решётке. 16


Применение фотонных кристаллов Первое применение - это спектральное разделение каналов. Во многих случаях по оптическому волокну идет не один, а несколько световых сигналов. Их бывает нужно рассортировать - направить каждый по отдельному пути. Например - оптический телефонный кабель, по которому идет одновременно несколько разговоров на разных длинах волн. Фотонный кристалл - идеальное средство для "высечения" из потока нужной длины волны и направления ее туда, куда требуется. Второе - кросс для световых потоков. Такое устройство, предохраняющее от взаимного воздействия световых каналов при их физическом пересечении, совершенно необходимо при создании светового компьютера и световых компьютерных чипов. 17


Фотонный кристалл в телекоммуникации Прошло не так много лет с начала первых разработок, как инвесторам стало ясно, что фотонные кристаллы являются оптическими материалами принципиально нового типа и что у них - блестящее будущее. Выход разработок фотонных кристаллов оптического диапазона на уровень коммерческого применения, скорее всего, произойдет в сфере телекоммуникаций. 18






21


Достоинства и недостатки литографических и голографических методов получения ФК Плюсы: высокое качество формируемой структуры. Быстрая скорость производства Удобство в массовом производстве Минусы требуется дорогостоящее оборудование возможно ухудшение резкости края Сложность изготовления установок 22




Крупным планом на дне видна оставшаяся шероховатость порядка 10 нм. Та же самая шероховатость видна на наших шаблонах SU-8, изготовленных голографической литографией. Это ясно показывает, что эта шероховатость не связана с процессом изготовления, а скорее связана с конечным разрешением фоторезиста. 24




Чтобы переместить фундаментальные PBGs длины волн в телекоммуникационном режиме от 1,5 мкм и 1,3 мкм, необходимо иметь в плоскости стержней расстояние порядка 1 мкм и меньше. У изготовленных образцов имеется проблема: стержни начинают соприкасаться друг с другом, что приводит к нежелательному большому заполнению фракции. Решение: Уменьшение диаметра стержня, следовательно, заполнения фракции, путем травления в кислородной плазме 26


Оптические свойства ФК Распространение излучения внутри фотонного кристалла благодаря периодичности среды становится похожим на движение электрона внутри обычного кристалла под действием периодического потенциала. При определенных условиях в зонной структуре ФК образуются щели, аналогично запрещенным электронным зонам в естественных кристаллах. 27


Двумерный периодический фотонный кристалл получают, формируя периодическую структуру вертикальных диэлектрических стержней, посаженных квадратно- гнездовым способом на подложке из двуокиси кремния. Располагая "дефекты" в фотонном кристалле, можно создавать волноводы, которые изогнутые под любым углом дают 100% пропускание Двумерные фотонные структуры с запрещенной зоной 28


Новый способ получения структуры с поляризационно-чувствительными фотонными запрещёнными зонами Разработка подхода к объединению структуры фотонной запрещённой зоны с др. оптическими и оптико-электронными приборами Наблюдение коротко- и длинноволновой границы диапазона. Целью опыта является: 29


Основными факторами, которые определяют свойства структуры с фотонной запрещенной зоной (PBG), являются контраст преломления, доля высоких и низких показателей материалов в решетке и расположение элементов решетки. Конфигурация используемого волновода сравнима с полупроводниковым лазером. Матрица очень маленькая (100 нм в диаметре) отверстия были вытравлены на сердцевине волновода, с образованием гексагональной решетки 30


Рис.2 a Эскиз решетки и зоны Бриллюэна, иллюстрирующий направления симметрии в горизонтальной близко "упакованной" решетке. b, c Измерение характеристик передачи на 19-нм фотонной решетке. 31 Зоны Бриллюэна с симметричными направлениями Реальное Пространоств о решетки Пе ред ача




Рис.4 Снимки электрического поля профилей бегущих волн, соответствующих полосе 1 (а) и полосе 2 (b), рядом с точкой К для ТМ поляризации. В а поле имеет такую же отражательную симметрию относительно y-z плоскости, что и плоская волна, поэтому должно легко взаимодействовать с входящей плоской волной. В противовес этому, в b поле ассиметрично, что не позволяет осуществить данное взаимодействие. 33


Выводы: Структуры с ФЗЗ могут использоваться в качестве зеркал и элементов для непосредственного управления эмиссией в полупроводниковых лазерах Демонстрация ФЗЗ концепций в геометрии волновода позволит реализовать очень компактные оптические элементы Включение локализованных смещений фазы (дефектов) в решетку позволит произвести новый тип микрополости и так высоко сконцентрировать свет, что можно будет использовать нелинейные эффекты 34



Фотонные кристаллы по характеру изменения коэффициента преломления можно разделить на три основных класса:

1. Одномерные, в которых коэффициент преломления периодически изменяется в одном пространственном направлении как показано на рисунке 2. На этом рисунке символом Л обозначен период изменения коэффициента преломления, и - показатели преломления двух материалов (но в общем случае может присутствовать любое число материалов). Такие фотонные кристаллы состоят из параллельных друг другу слоев различных материалов с разными коэффициентами преломления и могут проявлять свои свойства в одном пространственном направлении, перпендикулярном слоям.

Рисунок 1 - Схематическое представление одномерного фотонного кристалла

2. Двухмерные, в которых коэффициент преломления периодически изменяется в двух пространственных направлениях как показано на рисунке 2. На этом рисунке фотонный кристалл создан прямоугольными областями с коэффициентом преломления, которые находятся в среде с коэффициентом преломления. При этом, области с коэффициентом преломления упорядочены в двумерной кубической решетке. Такие фотонные кристаллы могут проявлять свои свойства в двух пространственных направлениях, и форма областей с коэффициентом преломления не ограничивается прямоугольниками, как на рисунке, а может быть любой (окружности, эллипсы, произвольная и т. д.). Кристаллическая решётка, в которой упорядочены эти области, также может быть другой, а не только кубической, как на приведённом рисунке.

Рисунок - 2 Схематическое представление двумерного фотонного кристалла

3. Трёхмерные, в которых коэффициент преломления периодически изменяется в трёх пространственных направлениях. Такие фотонные кристаллы могут проявлять свои свойства в трёх пространственных направлениях, и можно их представить как массив объёмных областей (сфер, кубов и т. д.), упорядоченных в трёхмерной кристаллической решётке.

Как и электрические среды в зависимости от ширины запрещённых и разрешённых зон, фотонные кристаллы можно разделить на проводники - способные проводить свет на большие расстояния с малыми потерями, диэлектрики - практически идеальные зеркала, полупроводники - вещества способные, например, выборочно отражать фотоны определённой длины волны и сверхпроводники, в которых благодаря коллективным явлениям фотоны способны распространяться практически на неограниченные расстояния.

Также различают резонансные и нерезонансные фотонные кристаллы. Резонансные фотонные кристаллы отличаются от нерезонансных тем, что в них используются материалы, у которых диэлектрическая проницаемость (или коэффициент преломления) как функция частоты имеет полюс на некоторой резонансной частоте.

Любая неоднородность в фотонном кристалле называются дефектом фотонного кристалла. В таких областях часто сосредотачивается электромагнитное поле, что используется в микрорезонаторах и волноводах, построенных на основе фотонных кристаллов.

Как и электрические среды в зависимости от ширины запрещённых и разрешённых зон, фотонные кристаллы можно разделить на проводники - способные проводить свет на большие расстояния с малыми потерями, диэлектрики - практически идеальные зеркала, полупроводники - вещества способные, например, выборочно отражать фотоны определённой длины волны и сверхпроводники, в которых благодаря коллективным явлениям фотоны способны распространяться практически на неограниченные расстояния. Также различают резонансные и нерезонансные фотонные кристаллы. Резонансные фотонные кристаллы отличаются от нерезонансных тем, что в них используются материалы, у которых диэлектрическая проницаемость (или коэффициент преломления) как функция частоты имеет полюс на некоторой резонансной частоте.

Любая неоднородность в фотонном кристалле называются дефектом фотонного кристалла. В таких областях часто сосредотачивается электромагнитное поле, что используется в микрорезонаторах и волноводах, построенных на основе фотонных кристаллов. Существует ряд аналогий при описании распространения электромагнитных волн в фотонных кристаллах и электронных свойств кристаллов. Приведем некоторые из них.

1. Состояние электрона внутри кристалла (закон движения) задается решением уравнения Шрлдингера, распространение света в фотонном кристалле подчиняется волновому уравнению, являющемуся следствием уравнений Максвелла:

  • 2. Состояние электрона описывается скалярной волновой функцией ш(r,t), состояние электромагнитной волны описывается векторными полями - напряженностью магнитной или электрической компонент, H (r,t) или E(r,t).
  • 3. Волновая функция электрона ш(r,t) может быть разложена в ряд по собственным состояниям шE(r), каждому из которых соответствует собственная энергия E. Напряженность электромагнитного поля H(r,t) может быть представлена суперпозицией монохроматических компонент (мод) электромагнитного поля Hщ(r), каждой из которой соответствует собственное значение - частота моды щ:

4. Атомный потенциал U(r) и диэлектрическая проницаемость е(r), фигурирующие в уравнениях Шрлдингера и Максвелла, представляют собой периодические функции с периодами, равными любымвекторам R решетки кристалла и фотонного кристалла, соответственно:

U(r) = U(r + R), (3)

5. Для волновой функции электрона и напряженности электромагнитного поля выполняется теорема Блоха с периодическими функциями u k и u k .

  • 6. Возможные значения волновых векторов k заполняют зону Бриллюэна кристаллической решетки или элементарной ячейки фотонного кристалла, задаваемую в пространстве обратных векторов.
  • 7. Энергия электрона E, являющаяся собственным значением уравнения Шрлдингера, и собственное значение волнового уравнения (следствия уравнений Максвелла) - частота моды щ - связаны со значениями волновых векторов k блоховских функций (4) законом дисперсии E(k) и щ(k).
  • 8. Примесный атом, нарушающий трансляционную симметрию атомного потенциала, является дефектом кристалла и может создавать примесное электронное состояние, локализованное в окрестности дефекта. Изменения диэлектрической проницаемости в определенной области фотонного кристалла нарушают трансляционную симметрию е(r) и приводит к появлению разрешенной моды внутри фотонной запрещенной зоны, локализованной в ее пространственной окрестности.

2014 г.

Фотонные кристаллы

Фотонные кристаллы (ФК) представляют собой структуры, характеризующиеся периодическим изменением диэлектрической проницаемости в пространстве. Оптические свойства ФК сильно отличаются от оптических свойств сплошных сред. Распространение излучения внутри фотонного кристалла благодаря периодичности среды становится похожим на движение электрона внутри обычного кристалла под действием периодического потенциала. В результате электромагнитные волны в фотонных кристаллах имеют зонный спектр и координатную зависимость, аналогичную блоховским волнам электронов в обычных кристаллах. При определенных условиях в зонной структуре ФК образуются щели, аналогично запрещенным электронным зонам в естественных кристаллах. В зависимости от конкретных свойств (материала элементов, их размера и периода решетки) в спектре ФК могут образовываться как полностью запрещенные по частоте зоны, для которых распространение излучения невозможно независимо от его поляризации и направления, так и частично запрещенные (стоп–зоны), в которых распространение возможно лишь в выделенных направлениях.

Фотонные кристаллы интересны как с фундаментальной точки зрения, так и для многочисленных приложений. На основе фотонных кристаллов создаются и разрабатываются оптические фильтры, волноводы (в частности, в волоконно-оптических линиях связи), устройства, позволяющие осуществлять управление тепловым излучением, на основе фотонных кристаллов были предложены конструкции лазеров с пониженным порогом накачки.

Помимо изменения спектров отражения, прохождения и поглощения металло-диэлектрические фотонные кристаллы обладают специфической плотностью фотонных состояний. Измененная плотность состояний может существенным образом влиять на время жизни возбужденного состояния атома или молекулы, помещенных внутрь фотонного кристалла, и, следовательно, менять характер люминесценции. Например, если частота перехода в молекуле-индикаторе, находящейся в фотонном кристалле, попадет в запрещенную зону, то люминесценция на этой частоте будет подавлена.

ФК делятся на три типа: одномерные, двумерные и трехмерные.

Одно-, двух- и трехмерные фотонные кристаллы. Разные цвета соответствуют материалам с разными значениями диэлектрической проницаемости.

Одномерными являются ФК с чередующимися слоями, сделанными из разных материалов.

Электронный снимок одномерного ФК, используемого в лазере как брэгговское многослойное зеркало.

Двумерные ФК могут иметь более разнообразные геометрии. К ним, например, можно отнести массивы бесконечных по длине цилиндров (их поперечный размер много меньше продольного) или периодические системы цилиндрических отверстий.

Электронные снимки, двумерного прямого и обратного ФК с треугольной решеткой.

Структуры трехмерных ФК весьма разнообразны. Наиболее распространенными в этой категории являются искусственные опалы - упорядоченные системы сферических рассеивателей. Различают два основных типа опалов: прямые и обратные (inverse) опалы. Переход от прямого опала к обратному опалу осуществляется заменой всех сферических элементов полостями (как правило, воздушными), в то время как пространство между этими полостями заполняется каким–либо материалом.

Ниже представлена поверхность ФК, представляющего собой прямой опал с кубической решеткой на основе самоорганизованных сферических микрочастиц полистирола.

Внутренняя поверхность ФК с кубической решеткой на основе самоорганизованных сферических микрочастиц полистирола.

Следующая структура представляет собой инверсный опал, синтезированный в результате многостадийного химического процесса: самосборки полимерных сферических частиц, пропитки пустот полученного материала веществом и удалением полимерной матрицы путем химического травления.

Поверхность кварцевого инверсного опала. Фотография получена с помощью сканирующей электронной микроскопии.

Еще одним типом трехмерных ФК являются структуры типа «поленница» (logpiles), образованные скрещенными, как правило, под прямым углом прямоугольными параллелепипедами.

Электронная фотография ФК из металлических параллелепипедов.

(crystal superlattice), в котором искусственно создано дополнительное поле с периодом, на порядки превышающим период основной решетки. Другими словами, это такая пространственно упорядоченная система со строгим периодическим изменением коэффициента преломления в масштабах, сопоставимых с длинами волн излучения в видимом и ближнем инфракрасном диапазонах. Благодаря этому такие решетки позволяют получать разрешенные и запрещенные зоны для энергии фотонов.

В целом энергетический спектр фотона, движущийся в фотонном кристалле, аналогичен спектру электронов в реальном кристалле, например в полупроводнике. Здесь так же образуются запрещенные зоны, в определенной области частот, в которой запрещено свободное распространение фотонов. Период модуляции диэлектрической проницаемости определяет энергетическое положение запрещенной зоны, длину волны отражаемого излучения. А ширина запрещенных зон определяется контрастом диэлектрической проницаемости.

Исследование фотонных кристаллов началось с 1987 года и очень быстро стало модным для многих ведущих лабораторий мира. Первый фотонный кристалл был создан в начале 1990-х годов сотрудником Bell Labs Эли Яблоновичем, который ныне работает в Университете Калифорния. Для получения 3хмерной периодической решетки в электрическом материале через маску Эли Яблонович высверливал цилиндрические отверстия таким образом, чтобы их сеть в объеме материала формировала гранецентрированную кубическую решетку пустот, при этом диэлектрическая проницаемость была модулирована с периодом в 1 сантиметр во всех 3х измерениях.

Рассмотрим фотон, падающий на фотонный кристалл. Если этот фотон обладает энергией, которая соответствует запрещенной зоне фотонного кристалла, то он не сможет распространяться в кристалле и отразится от него. И наоборот, если фотон будет обладать энергией, соответствующей энергии разрешенной зоны кристалла, то он сможет распространяться в кристалле. Таким образом, фотонный кристалл имеет функцию оптического фильтра, пропускающие или отражающие фотоны с определенными энергиями.

В природе таким свойством обладают крылья африканской бабочки-парусника, павлины и полудрагоценные камни, такие как опал и перламутр (рис. 1).

Фотонные кристаллы классифицируют по направлениям периодического изменения коэффициента преломления в измерении:

1. Одномерные фотонные кристаллы. В таких кристаллах коэффициент преломления изменяется в одном пространственном направлении (рис. 1).
Одномерные фотонные кристаллы состоят из параллельных друг другу слоев материалов с разными коэффициентами преломления. Такие кристаллы проявляют свойства только в одном пространственном направлении перпендикулярном слоям.
2. Двумерные фотонные кристаллы. В таких кристаллах коэффициент преломления изменяется в двух пространственных направлениях (рис. 2). В таком кристалле области с одним коэффициентом преломления (n1) находятся в среде другого коэффициента преломления (n2). Форма областей с коэффициентом преломления может быть любой, как и сама кристаллическая решетка. Такие фотонные кристаллы могут проявлять свои свойства в двух пространственных направлениях.
3. Трехмерные фотонные кристаллы. В таких кристаллах коэффициент преломления изменяется в трех пространственных направлениях (рис. 3). Такие кристаллы могут проявлять свои свойства в трех пространственных направлениях.