Меню
Бесплатно
Главная  /  Анатомия  /  Найти площадь полной поверхности правильной. Площадь боковой поверхности пирамиды

Найти площадь полной поверхности правильной. Площадь боковой поверхности пирамиды

Площадь поверхности пирамиды. В этой статье мы рассмотрим с вами задачи с правильными пирамидами. Напомню, что правильная пирамида – это пирамида, основанием которой является правильный многоугольник, вершина пирамиды проецируется в центр этого многоугольника.

Боковая грань такой пирамиды это равнобедренный треугольник. Высота этого треугольника, проведенная из вершины правильной пирамиды, называется апофемой, SF – апофема:

В представленном ниже типе задач требуется найти площадь поверхности всей пирамиды или площадь её боковой поверхности. На блоге уже рассмотрено несколько задач с правильными пирамидами, где ставился вопрос о нахождении элементов (высоты, ребра основания, бокового ребра), .

В заданиях ЕГЭ, как правило, рассматриваются правильные треугольные, четырёхугольные и шестиугольные пирамиды. Задач с правильными пятиугольными и семиугольными пирамидами не встречал.

Формула площади всей поверхности проста — требуется найти сумму площади основания пирамиды и площади её боковой поверхности:

Рассмотрим задачи:

Стороны основания правильной четырехугольной пирамиды равны 72, боковые ребра равны 164. Найдите площадь поверхности этой пирамиды.

Площадь поверхности пирамиды равна сумме площадей боковой поверхности и основания:

*Боковая поверхность состоит из четырёх равных по площади треугольников. Основание пирамиды это квадрат.

Площадь боковой стороны пирамиды можем вычислить воспользовавшись :


Таким образом, площадь поверхности пирамиды равна:

Ответ: 28224

Стороны основания правильной шестиугольной пирамиды равны 22, боковые ребра равны 61. Найдите площадь боковой поверхности этой пирамиды.

Основанием правильной шестиугольной пирамиды является правильный шестиугольник.

Площадь боковой поверхности данной пирамиды состоит из шести площадей равных треугольников с сторонами 61,61 и 22:

Найдём площадь треугольника, воспользуемся формулой Герона:


Таким образом, площадь боковой поверхности равна:

Ответ: 3240

*В представленных выше задачах площадь боковой грани можно было найти используя другую формулу треугольника, но для этого нужно вычислить апофему.

27155. Найдите площадь поверхности правильной четырехугольной пирамиды, стороны основания которой равны 6 и высота равна 4.

Для того, чтобы найти площадь поверхности пирамиды нам необходимо знать площадь основания и площадь боковой поверхности:

Площадь основания равна 36, так как это квадрат со стороной 6.

Боковая поверхность состоит из четырёх граней, которые являются равными треугольниками. Для того, чтобы найти площадь такого треугольника требуется знать его основание и высоту (апофему):

*Площадь треугольника равна половине произведения основания и высоты проведённой к этому основанию.

Основание известно, оно равно шести. Найдём высоту. Рассмотрим прямоугольный треугольник (он выделен жёлтым):

Один катет равен 4, так как это высота пирамиды, другой равен 3, так как он равен половине ребра основания. Можем найти гипотенузу, по теореме Пифагора:

Значит площадь боковой поверхности пирамиды равна:

Таким образом, площадь поверхности всей пирамиды равна:

Ответ: 96

27069. Стороны основания правильной четырехугольной пирамиды равны 10, боковые ребра равны 13. Найдите площадь поверхности этой пирамиды.

27070. Стороны основания правильной шестиугольной пирамиды равны 10, боковые ребра равны 13. Найдите площадь боковой поверхности этой пирамиды.

Существуют ещё формулы площади боковой поверхности правильной пирамиды. В правильной пирамиде основание является ортогональной проекцией боковой поверхности, поэтому:

P - периметр основания, l - апофема пирамиды

*Эта формула основывается на формуле площади треугольника.

Если хотите узнать подробнее как эти формулы выводятся, не пропустите, следите за публикацией статей. На этом всё. Успеха Вам!

С уважением, Александр Крутицких.

P.S: Буду благодарен Вам, если расскажете о сайте в социальных сетях.

– это многогранная фигура, в основании которой лежит многоугольник, а остальные грани представлены треугольниками с общей вершиной.

Если в основании лежит квадрат, то пирамиду называется четырехугольной , если треугольник – то треугольной . Высота пирамиды проводится из ее вершины перпендикулярно основанию. Также для расчета площади используется апофема – высота боковой грани, опущенная из ее вершины.
Формула площади боковой поверхности пирамиды представляет собой сумму площадей ее боковых граней, которые равны между собой. Однако этот способ расчета применяется очень редко. В основном площадь пирамиды рассчитывается через периметр основания и апофему:

Рассмотрим пример расчета площади боковой поверхности пирамиды.

Пусть дана пирамида с основанием ABCDE и вершиной F . AB =BC =CD =DE =EA =3 см. Апофема a = 5 см. Найти площадь боковой поверхности пирамиды.
Найдем периметр. Так как все грани основания равны, то периметр пятиугольника будет равен:
Теперь можно найти боковую площадь пирамиды:

Площадь правильной треугольной пирамиды


Правильная треугольная пирамида состоит из основания, в котором лежит правильный треугольник и трех боковых граней, которые равны по площади.
Формула площади боковой поверхности правильной треугольной пирамиды может быть рассчитана разными способами. Можно применить обычную формулу расчета через периметр и апофему, а можно найти площадь одной грани и умножить ее на три. Так как грань пирамиды – это треугольник, то применим формулу площади треугольника. Для нее потребуется апофема и длина основания. Рассмотрим пример расчета площади боковой поверхности правильной треугольной пирамиды.

Дана пирамида с апофемой a = 4 см и гранью основания b = 2 см. Найдите площадь боковой поверхности пирамиды.
Для начала находим площадь одной из боковых граней. В данном случае она будет:
Подставляем значения в формулу:
Так как в правильной пирамиде все боковые стороны одинаковы, то площадь боковой поверхности пирамиды будет равна сумме площадей трех граней. Соответственно:

Площадь усеченной пирамиды


Усеченной пирамидой называется многогранник, который образовывается пирамидой и ее сечением, параллельным основанию.
Формула площади боковой поверхности усеченной пирамиды очень проста. Площадь равняется произведению половины суммы периметров оснований на апофему:

Цилиндр представляет собой геометрическое тело, ограниченное двумя параллельными плоскостями и цилиндрической поверхностью. В статье поговорим о том, как найти площадь цилиндра и, применив формулу, решим для примера несколько задач.

У цилиндра есть три поверхности: вершина, основание, и боковая поверхность.

Вершина и основание цилиндра являются окружностями, их легко определить.

Известно, что площадь окружности равна πr 2 . Поэтому, формула площади двух окружностей (вершины и основания цилиндра) будет иметь вид πr 2 + πr 2 = 2πr 2 .

Третья, боковая поверхность цилиндра, является изогнутой стенкой цилиндра. Для того чтобы лучше представить эту поверхность попробуем преобразовать её, чтобы получить узнаваемую форму. Представьте себе, что цилиндр, это обычная консервная банка, у которой нет верхней крышки и дна. Сделаем вертикальный надрез на боковой стенке от вершины до основания банки (Шаг 1 на рисунке) и попробуем максимально раскрыть (выпрямить) полученную фигуру (Шаг 2).

После полного раскрытия полученной банки мы увидим уже знакомую фигуру (Шаг 3), это прямоугольник. Площадь прямоугольника вычислить легко. Но перед этим вернемся на мгновение к первоначальному цилиндру. Вершина исходного цилиндра является окружностью, а мы знаем, что длина окружности вычисляется по формуле: L = 2πr. На рисунке она отмечена красным цветом.

Когда боковая стенка цилиндра полностью раскрыта, мы видим, что длина окружности становится длиной полученного прямоугольника. Сторонами этого прямоугольника будут длина окружности(L = 2πr) и высота цилиндра(h). Площадь прямоугольника равна произведению его сторон – S = длина х ширина = L x h = 2πr x h = 2πrh. В результате мы получили формулу для расчета площади боковой поверхности цилиндра.

Формула площади боковой поверхности цилиндра
S бок. = 2πrh

Площадь полной поверхности цилиндра

Наконец, если мы сложим площадь всех трёх поверхностей, мы получим формулу площади полной поверхности цилиндра. Площади поверхности цилиндра равна площадь вершины цилиндра + площадь основания цилиндра + площадь боковой поверхности цилиндра или S = πr 2 + πr 2 + 2πrh = 2πr 2 + 2πrh. Иногда это выражение записывается идентичной формулой 2πr (r + h).

Формула площади полной поверхности цилиндра
S = 2πr 2 + 2πrh = 2πr(r + h)
r – радиус цилиндра, h – высота цилиндра

Примеры расчета площади поверхности цилиндра

Для понимания приведенных формул попробуем посчитать площадь поверхности цилиндра на примерах.

1. Радиус ос­но­ва­ния цилиндра равен 2, высота равна 3. Определите площадь боковой поверхности цилиндра.

Площадь полной поверхности рассчитывается по формуле: S бок. = 2πrh

S бок. = 2 * 3,14 * 2 * 3

S бок. = 6,28 * 6

S бок. = 37,68

Площадь боковой поверхности цилиндра равна 37,68.

2. Как найти площадь поверхности цилиндра, если высота равна 4, а радиус 6?

Площадь полной поверхности рассчитывается по формуле: S = 2πr 2 + 2πrh

S = 2 * 3,14 * 6 2 + 2 * 3,14 * 6 * 4

S = 2 * 3,14 * 36 + 2 * 3,14 * 24

Инструкция

Прежде всего, стоит понять, что боковая поверхность пирамиды представлена несколькими треугольниками, площади которых можно найти с помощью самых различных формул, в зависимости от известных данных:

S = (a*h)/2, где h - высота, опущенная на сторону a;

S = a*b*sinβ, где a, b - стороны треугольника, а β - угол между этими сторонами;

S = (r*(a + b + c))/2, где a, b, c - стороны треугольника, а r - радиус вписанной в этот треугольник окружности;

S = (a*b*c)/4*R, где R - радиус описанной вокруг окружности треугольника;

S = (a*b)/2 = r² + 2*r*R (если треугольник - прямоугольный);

S = S = (a²*√3)/4 (если треугольник - равносторонний).

На самом деле, это лишь самые основные из известных формул для нахождения площади треугольника.

Рассчитав при помощи указанных выше формул площади всех треугольников, являющихся гранями пирамиды, можно приступить к исчислению площади данной пирамиды. Делается это предельно просто: необходимо сложить площади всех треугольников, образующих боковую поверхность пирамиды. Формулой это можно выразить так:

Sп = ΣSi, где Sп - площадь боковой , Si - площадь i-ого треугольника, являющегося частью ее боковой поверхности.

Для большей ясности можно рассмотреть небольшой пример: дана правильная пирамида, боковые грани которой образованы равносторонними треугольникам, а в основании ее лежит квадрат. Длина ребра данной пирамиды составляет 17 см. Требуется найти площадь боковой поверхности данной пирамиды.

Решение: известна длина ребра данной пирамиды, известно, что грани ее - равносторонние треугольники. Таким образом, можно сказать, что все стороны всех треугольников боковой поверхности равны 17 см. Поэтому для того, чтобы рассчитать площадь любого из этих треугольников, потребуется применить формулу:

S = (17²*√3)/4 = (289*1.732)/4 = 125.137 см²

Известно, что в основании пирамиды лежит квадрат. Таким образом, понятно, что данных равносторонних треугольников четыре. Тогда площадь боковой поверхности пирамиды рассчитывается так:

125.137 см² * 4 = 500.548 см²

Ответ: площадь боковой поверхности пирамиды составляет 500.548 см²

Сначала вычислим площадь боковой поверхности пирамиды. Под боковой поверхностью подразумевается сумма площадей всех боковых граней. Если вы имеете дело с правильной пирамидой (то есть такой, в основании которой лежит правильный многоугольник, а вершина проецируется в центр этого многоугольника), то для вычисления всей боковой поверхности достаточно умножить периметр основания (то есть сумму длин всех сторон многоугольника, лежащего в основании пирамиды) на высоту боковой грани (иначе называемой апофемой) и разделить полученное значение на 2: Sб=1/2P*h, где Sб - это площадь боковой поверхности, P - периметр основания, h - высота боковой грани (апофема).

Если же перед вами произвольная пирамида, то придется отдельно вычислять площади всех граней, а затем их складывать. Поскольку боковыми гранями пирамиды являются треугольники, воспользуйтесь формулой площади треугольника: S=1/2b*h, где b - это основание треугольника, а h - высота. Когда площади всех граней вычислены, остается только сложить их, чтобы получить площадь боковой поверхности пирамиды.

Затем необходимо вычислить площадь основания пирамиды. Выбор формулы для расчета зависит от того, какой многоугольник лежит в основании пирамида: правильный (то есть такой, все стороны которого имеют одинаковую длину) или неправильный. Площадь правильного многоугольника можно вычислить, умножив периметр на радиус вписанной в многоугольник окружности и поделив полученное значение на 2: Sn=1/2P*r, где Sn - это площадь многоугольника, P - это периметр, а r - это радиус вписанной в многоугольник окружности.

Усеченная пирамида – это многогранник, который образовывается пирамидой и ее сечением, параллельным основанию. Найти площадь боковой поверхности пирамиды совсем несложно. Ее очень проста: площадь равняется произведению половины суммы оснований по . Рассмотрим пример расчета площади боковой поверхности . Допустим, дана правильная пирамида. Длины основания равны b=5 см, c = 3 см. Апофема a = 4 см. Чтобы найти площадь боковой поверхности пирамиды, нужно сначала найти периметр оснований. В большом основании он будет равен p1=4b=4*5=20 см. В меньшем основании формула будет следующей: p2=4c=4*3=12 см. Следовательно, площадь будет равна: s=1/2(20+12)*4=32/2*4=64 см.

Если в основании пирамиды лежит неправильный многоугольник, для вычисления площади всей фигуры сначала нужно будет разбить многоугольник на треугольники, вычислить площадь каждого, а затем сложить. В остальных же случаях, чтобы найти боковую поверхность пирамиды, нужно найти площадь каждой ее боковой грани и сложить полученные результаты. В некоторых случаях задача нахождения боковой поверхности пирамиды может быть облегчена. Если одна боковая грань перпендикулярна основанию или две смежные боковые грани перпендикулярны основанию, то основание пирамиды считается ортогональной проекцией части ее боковой поверхности, и они связаны формулами.

Чтобы завершить вычисление площади поверхности пирамиды, сложите площади боковой поверхности и основания пирамиды.

Пирамида – это многогранник, одна из граней которого (основание) – произвольный многоугольник, а остальные грани (боковые) – треугольники, имеющие . По числу углов основания пирамиды треугольные (тетраэдр), четырехугольные и так далее.

Пирамида является многогранником, имеющим основание в виде многоугольника, а остальные грани являются треугольниками с общей вершиной. Апофемой называется высота боковой грани правильной пирамиды, которая проведена из её вершины.

Пирамида представляет собой многогранник, в основании которого лежит многоугольник, а боковые грани - это треугольники, имеющие одну общую вершину. Площадь поверхности пирамиды равна сумме площадей боковой поверхности и основания пирамиды .

Вам понадобится

  • Бумага, ручка, калькулятор

Инструкция

Сначала вычислим площадь боковой поверхности . Под боковой поверхностью подразумевается сумма всех боковых граней. Если вы имеете дело с правильной пирамидой (то есть такой, которой лежит правильный многоугольник, а вершина проецируется в центр этого многоугольника), то для вычисления всей боковой поверхности достаточно умножить периметр основания (то есть сумму длин всех сторон многоугольника, лежащего в основании пирамиды ) на высоту боковой грани (иначе называемой ) и разделить полученное значение на 2: Sб=1/2P*h, где Sб - это площадь боковой поверхности , P - периметр основания, h - высота боковой грани (апофема).

Если же перед вами произвольная пирамида, то придется вычислять площади всех граней, а затем их складывать. Поскольку боковыми гранями пирамиды являются , воспользуйтесь формулой площади треугольника: S=1/2b*h, где b - это основание треугольника, а h - высота. Когда площади всех граней вычислены, остается только сложить их, чтобы получить площадь боковой поверхности пирамиды .

Затем необходимо вычислить площадь основания пирамиды . Выбор для расчета от того, многоугольник лежит в основании пирамида: правильный (то есть такой, все стороны которого имеют одинаковую длину) или . Площадь правильного многоугольника можно вычислить, умножив периметр на радиус вписанной в многоугольник окружности и поделив полученное значение на 2: Sn=1/2P*r, где Sn - это площадь многоугольника, P - это периметр, а r - это радиус вписанной в многоугольник окружности.

Если в основании пирамиды лежит неправильный многоугольник, то для вычисления площади всей фигуры снова придется разбивать многоугольник на треугольники, вычислять площадь каждого, а затем складывать.

Чтобы завершить вычисление площади поверхности пирамиды , сложите площади боковой поверхности и основания пирамиды .

Видео по теме

Многоугольник представляет собой геометрическую фигуру, построенную путем замыкания ломаной. Различают несколько видов многоугольника, которые отличаются в зависимости от количества вершин. Вычисление площади производится для каждого вида многоугольника определенными способами.

Инструкция

Перемножьте длины сторон, если вам необходимо вычислить площадь квадрата или прямоугольника. Если необходимо узнать площадь прямоугольного треугольника, достройте его до прямоугольника, вычислить его площадь и разделить ее на два.

Используйте для вычисления площади следующий способ, если фигура не имеет больше 180 градусов (выпуклый многоугольник), при этом все ее вершины находятся в сетки координат, а сама себя не пересекает.
Опишите вокруг такого многоугольника прямоугольник, чтобы его стороны были параллельны линиям сетки (осям координат). При этом хотя бы одна из вершин многоугольника должна быть вершиной прямоугольника.

Два основания могут быть только у усеченной пирамиды . В этом случае второе основание образуется сечением, параллельным большему основанию пирамиды . Найти одно из оснований можно в том случае, если известна или линейные элементы второго.

Вам понадобится

  • - свойства пирамиды;
  • - тригонометрические функции;
  • - подобие фигур;
  • - нахождение площадей многоугольников.

Инструкция

Если основание представляет собой правильный треугольник, найдите его площадь , умножив квадрат стороны, на корень квадратный из 3 поделенный на 4. Если основание представляет собой квадрат, возведите его сторону во вторую степень. В общем случае, для любого правильного многоугольника примените формулу S=(n/4) a² ctg(180º/n), где n – количество сторон правильного многоугольника, a – длина его стороны.

Сторону меньшего основания найдите, по формуле b=2 (a/(2 tg(180º/n))-h/tg(α)) tg(180º/n). Здесь а – большего основания, h – высота усеченной пирамиды , α – двугранный угол при ее основании, n – количество сторон оснований (оно одинаковое). Площадь второго основания найдите аналогично первому, используя в формуле длину его стороны S=(n/4) b² ctg(180º/n).

Если основания представляют собой другие типы многоугольников, известны все стороны одного из оснований , и одна из сторон другого, то остальные стороны вычислите как подобные. Например, стороны большего основания 4, 6, 8 см. Большая сторона меньшего основания рана 4 см. Вычислите коэффициент пропорциональности, 4/8=2 (берем стороны в каждом из оснований ), и рассчитайте другие стороны 6/2=3 см, 4/2=2 см. Получим стороны 2, 3, 4 см в меньшем основании стороны. Теперь вычислите их , как площади треугольников.

Если известно соотношение соответствующих элементов в усеченной , то соотношение площадей оснований будет равно отношению квадратов этих элементов. Например, если известны соответствующие стороны оснований а и а1, то а²/а1²=S/S1.

Под площадью пирамиды обычно понимается площадь ее боковой или полной поверхности. В основании данного геометрического тела лежит многоугольник. Боковые грани имеют треугольную форму. У них есть общая вершина, которая одновременно является и вершиной пирамиды .

Вам понадобится

  • - лист бумаги;
  • - ручка;
  • - калькулятор;
  • - пирамида с заданными параметрами.

Инструкция

Рассмотрите данную в задании пирамиду. Определите, правильный или неправильный многоугольник лежит в ее основании. У правильного все стороны равны. Площадь в этом случае равна половине произведения периметра на радиус . Найдите периметр, умножив длину стороны l на количество сторон n, то есть P=l*n. Выразить площадь основания можно формулой Sо=1/2P*r, где P - периметр, а r - радиус вписанной окружности.

Мы знаем, что такое конус, попробуем найти площадь его поверхности. Зачем нужно решать такую задачу? Например, нужно понять, сколько теста пойдет на изготовление вафельного рожка? Или сколько кирпичей понадобится, чтобы сложить кирпичную крышу замка?

Измерить площадь боковой поверхности конуса просто так не получится. Но представим себе все тот же рожок, обмотанный тканью. Чтобы найти площадь куска ткани, нужно разрезать и разложить ее на столе. Получится плоская фигура, ее площадь мы сможем найти.

Рис. 1. Разрез конуса по образующей

Сделаем так же с конусом. «Разрежем» его боковую поверхность вдоль любой образующей, например, (см. рис. 1).

Теперь «размотаем» боковую поверхность на плоскость. Получаем сектор. Центр этого сектора - вершина конуса, радиус сектора равен образующей конуса, а длина его дуги совпадает с длиной окружности основания конуса. Такой сектор называется разверткой боковой поверхности конуса (см. рис. 2).

Рис. 2. Развертка боковой поверхности

Рис. 3. Измерение угла в радианах

Попробуем найти площадь сектора по имеющимся данным. Сперва введем обозначение: пусть угол при вершине сектора в радианах (см. рис. 3).

С углом при вершине развертки нам придется часто сталкиваться в задачах. Пока же попробуем ответить на вопрос: а не может ли этот угол получиться больше 360 градусов? То есть не получится ли так, что развертка наложится сама на себя? Конечно же, нет. Докажем это математически. Пусть развертка «наложилась» сама на себя. Это означает, что длина дуги развертки больше длины окружности радиуса . Но, как уже было сказано, длина дуги развертки есть длина окружности радиуса . А радиус основания конуса, разумеется, меньше образующей, например, потому, что катет прямоугольного треугольника меньше гипотенузы

Тогда вспомним две формулы из курса планиметрии: длина дуги . Площадь сектора: .

В нашем случае роль играет образующая , а длина дуги равна длине окружности основания конуса, то есть . Имеем:

Окончательно получаем: .

Наряду с площадью боковой поверхности можно найти и площадь полной поверхности. Для этого к площади боковой поверхности надо прибавить площадь основания. Но основание - это круг радиуса , чья площадь по формуле равна .

Окончательно имеем: , где - радиус основания цилиндра, - образующая.

Решим пару задач на приведенные формулы.

Рис. 4. Искомый угол

Пример 1 . Разверткой боковой поверхности конуса является сектор с углом при вершине. Найти этот угол, если высота конуса равна 4 см, а радиус основания равен 3 см (см. рис. 4).

Рис. 5. Прямоугольный треугольник, образующий конус

Первым действием, по теореме Пифагора, найдем образующую: 5 см (см. рис. 5). Далее, мы знаем, что .

Пример 2 . Площадь осевого сечения конуса равна , высота равна . Найти площадь полной поверхности (см. рис. 6).