Меню
Бесплатно
Главная  /  Диагностика  /  Количество теплоты. Уравнение теплового баланса. Решение задач на расчёт количества теплоты, необходимого для нагревания тела или выделяемого им при охлаждении

Количество теплоты. Уравнение теплового баланса. Решение задач на расчёт количества теплоты, необходимого для нагревания тела или выделяемого им при охлаждении

Что быстрее нагреется на плите - чайник или ведро воды? Ответ очевиден - чайник. Тогда второй вопрос - почему?

Ответ не менее очевиден - потому что масса воды в чайнике меньше. Отлично. А теперь вы можете проделать самостоятельно самый настоящий физический опыт в домашних условиях. Для этого вам понадобится две одинаковые небольшие кастрюльки, равное количество воды и растительного масла, например, по пол-литра и плита. На одинаковый огонь ставите кастрюльки с маслом и водой. А теперь просто наблюдайте, что быстрее будет нагреваться. Если есть градусник для жидкостей, можно применить его, если нет, можно просто пробовать температуру время от времени пальцем, только осторожно, чтобы не обжечься. В любом случае вы вскоре убедитесь, что масло нагревается значительно быстрее воды. И еще один вопросик, который тоже можно реализовать в виде опыта. Что быстрее закипит - теплая вода или холодная? Все снова очевидно - теплая будет на финише первой. К чему все эти странные вопросы и опыты? К тому, чтобы определить физическую величину, называемую «количеством теплоты».

Количество теплоты

Количество теплоты - это энергия, которую тело теряет или приобретает при теплопередаче. Это понятно и из названия. При остывании тело будет терять некое количество теплоты, а при нагревании - поглощать. А ответы на наши вопросы показали нам, от чего зависит количество теплоты? Во-первых, чем больше масса тела, тем большее количество теплоты надо затратить на изменение его температуры на один градус. Во-вторых, количество теплоты, необходимое для нагревания тела, зависит от того вещества, из которого оно состоит, то есть от рода вещества. И в-третьих, разность температур тела до и после теплопередачи также важна для наших расчетов. Исходя из всего вышесказанного, мы можем определить количество теплоты формулой:

Q=cm(t_2-t_1) ,

где Q - количество теплоты,
m - масса тела,
(t_2-t_1) - разность между начальной и конечной температурами тела,
c - удельная теплоемкость вещества, находится из соответствующих таблиц.

По этой формуле можно произвести расчет количества теплоты, которое необходимо, чтобы нагреть любое тело или которое это тело выделит при остывании.

Измеряется количество теплоты в джоулях (1 Дж), как и всякий вид энергии. Однако, величину эту ввели не так давно, а измерять количество теплоты люди начали намного раньше. И пользовались они единицей, которая широко используется и в наше время - калория (1 кал). 1 калория - это такое количество теплоты, которое потребуется для нагреванияь 1 грамма воды на 1 градус Цельсия. Руководствуясь этими данными, любители подсчитывать калории в съедаемой пище, могут ради интереса подсчитать, сколько литров воды можно вскипятить той энергией, которую они потребляют с едой в течение дня.

721. Почему для охлаждения некоторых механизмов применяют воду?
Вода обладает большой удельной теплоемкостью, что способствует хорошему отводу тепла от механизма.

722. В каком случае нужно затратить больше энергии: для нагревания на 1 °С одного литра воды или для нагревания на 1 °С ста граммов воды?
Для нагрева литра воды, так как чем больше масса, тем больше нужно затратить энергии.

723. Мельхиоровую и серебряную вилки одинаковой массы опустили в горячую воду. Одинаковое ли количество теплоты они получат воды?
Мельхиоровая вилка получит больше теплоты, потому что удельная теплоемкость мельхиора больше, чем серебра.

724. По куску свинца и по куску чугуна одинаковой массы три раза ударили кувалдой. Какой кусок сильнее нагрелся?
Свинец нагреется сильнее, потому что его удельная теплоемкость меньше, чем чугуна, и для нагрева свинца нужно меньше энергии.

725. В одной колбе находится вода, в другой – керосин той же массы и температуры. В каждую колбу бросили по одинаково нагретому железному кубику. Что нагреется до более высокой температуры – вода или керосин?
Керосин.

726. Почему в городах на берегу моря колебания температуры зимой и летом менее резки, чем в городах, расположенных в глубине материка?
Вода нагревается и остывает медленнее, чем воздух. Зимой она остывает и двигает теплые массы воздуха на сушу, делая климат на берегу более теплым.

727. Удельная теплоемкость алюминия равна 920 Дж/кг °С. Что это означает?
Это означает, что для нагрева 1 кг алюминия на 1 °С необходимо затратить 920 Дж.

728. Алюминиевый и медный бруски одинаковой массы 1 кг охлаждают на 1 °С. На сколько изменится внутренняя энергия каждого бруска? У какого бруска она изменится больше и на сколько?

729. Какое количество теплоты необходимо для нагрева килограммовой железной заготовки на 45 °С?

730. Какое количество теплоты требуется, чтобы нагреть 0,25 кг воды с 30 °С до 50 °С?

731. Как изменится внутренняя энергия двух литров воды при нагревании на 5 °С?

732. Какое количество теплоты необходимо для нагрева 5 г воды от 20 °С до 30 °С?

733. Какое количество теплоты необходимо для нагревания алюминиевого шарика массой 0,03 кг на 72 °С?

734. Рассчитайте количество теплоты, необходимое для нагрева 15 кг меди на 80 °С.

735. Рассчитайте количество теплоты, необходимое для нагрева 5 кг меди от 10 °С до 200 °С.

736. Какое количество теплоты требуется для нагрева 0,2 кг воды от 15 °С до 20 °С?

737. Вода массой 0,3 кг остыла на 20 °С. На сколько уменьшилась внутренняя энергия воды?

738. Какое количество теплоты нужно, чтобы 0,4 кг воды при температуре 20 °С нагреть до температуры 30 °С?

739. Какое количество теплоты затрачено на нагрев 2,5 кг воды на 20 °С?

740. Какое количество теплоты выделилось при остывании 250 г воды от 90 °С до 40 °С?

741. Какое количество теплоты потребуется для того, чтобы 0,015 л воды нагреть на 1 °С?

742. Рассчитайте количество теплоты, необходимое, чтобы нагреть пруд объемом 300 м3 на 10 °С?

743. Какое количество теплоты нужно сообщить 1 кг воды, чтобы повысить ее температуру от 30 °С до 40 °С?

744. Вода объемом 10 л остыла от температуры 100 °С до температуры 40 °С. Какое количество теплоты выделилось при этом?

745. Рассчитайте количество теплоты, необходимое для нагрева 1 м3 песка на 60 °С.

746. Объем воздуха 60 м3, удельная теплоемкость 1000 Дж/кг °С, плотность воздуха 1,29 кг/м3. Какое количество теплоты необходимо, чтобы нагреть его на 22 °С?

747. Воду нагрели на 10 °С, затратив 4,20 103 Дж теплоты. Определите количество воды.

748. Воде массой 0,5 кг сообщили 20,95 кДж теплоты. Какой стала температура воды, если первоначальная температура воды была 20 °С?

749. В медную кастрюлю массой 2,5 кг налито 8 кг воды при 10 °С. Какое количество теплоты необходимо, чтобы воду в кастрюле нагреть до кипения?

750. Литр воды при температуре 15 °С налит в медный ковшик массой 300 г. Какое количество теплоты необходимо, чтобы нагреть воду в ковшике на 85 °С?

751. Кусок нагретого гранита массой 3 кг помещают в воду. Гранит передает воде 12,6 кДж теплоты, охлаждаясь на 10 °С. Какова удельная теплоемкость камня?

752. К 5 кг воды при 12 °С долили горячую воду при 50 °С, получив смесь температурой 30 °С. Сколько воды долили?

753. В 3 л воды при 60 °С долили воду при 20 °С, получив воду при 40 °С. Сколько воды долили?

754. Какова будет температура смеси, если смешать 600 г воды при 80 °С с 200 г воды при 20 °С?

755. Литр воды при 90 °С влили в воду при 10 °С, причем температура воды стала 60 °С. Сколько было холодной воды?

756. Определите, сколько надо налить в сосуд горячей воды, нагретой до 60 °С, если в сосуде уже находится 20 л холодной воды при температуре 15 °С; температура смеси должна быть 40 °С.

757. Определите, какое количество теплоты требуется для нагревания 425 г воды на 20 °С.

758. На сколько градусов нагреются 5 кг воды, если вода получит 167,2 кДж?

759. Сколько потребуется тепла, чтобы m граммов воды при температуре t1, нагреть до температуры t2?

760. В калориметр налито 2 кг воды при температуре 15 °С. До какой температуры нагреется вода калориметра, если в нее опустить латунную гирю в 500 г, нагретую до 100 °С? Удельная теплоемкость латуни 0,37 кДж/(кг °С).

761. Имеются одинакового объема куски меди, олова и алюминия. Какой из этих кусков обладает наибольшей и какой наименьшей теплоемкостью?

762. В калориметр было налито 450 г воды, температура которой 20 °С. Когда в эту воду погрузили 200 г железных опилок, нагретых до 100 °С, температура воды стала 24 °С. Определите удельную теплоемкость опилок.

763. Медный калориметр весом 100 г вмещает 738 г воды, температура которой 15 °С. В этот калориметр опустили 200 г меди при температуре 100 °С, после чего температура калориметра поднялась до 17 °С. Какова удельная теплоемкость меди?

764. Стальной шарик массой 10 г вынут из печи и опущен в воду с температурой 10 °С. Температура воды поднялась до 25 °С. Какова была температура шарика в печи, если масса воды 50 г? Удельная теплоемкость стали 0,5 кДж/(кг °С).

770. Стальной резец массой 2 кг был нагрет до температуры 800 °С и затем опущен в сосуд, содержащий 15 л воды при температуре 10 °С. До какой температуры нагреется вода в сосуде?

(Указание. Для решения данной задачи необходимо составить уравнение, в котором за неизвестное принять искомую температуру воды в сосуде после опускания резца.)

771. Какой температуры получится вода, если смешать 0,02 кг воды при 15 °С, 0,03 кг воды при 25 °С и 0,01 кг воды при 60 °С?

772. Для отопления хорошо вентилируемого класса требуется количество теплоты 4,19 МДж в час. Вода поступает в радиаторы отопления при 80 °С, а выходит из них при 72 °С. Сколько воды нужно подавать каждый час в радиаторы?

773. Свинец массой 0,1 кг при температуре 100 °С погрузили в алюминиевый калориметр массой 0,04 кг, содержащий 0,24 кг воды при температуре 15 °С. После чего в калориметре установилась температура 16 °С. Какова удельная теплоемкость свинца?

(или теплопередаче).

Удельная теплоемкость вещества.

Теплоемкость — это количество теплоты, поглощаемой телом при нагревании на 1 градус .

Теплоемкость тела обозначается заглавной латинской буквой С .

От чего зависит теплоемкость тела? Прежде всего, от его массы . Ясно, что для нагрева, напри-мер, 1 килограмма воды потребуется больше тепла, чем для нагрева 200 граммов .

А от рода вещества? Проделаем опыт. Возьмем два одинаковых сосуда и, налив в один из них воду массой 400 , а в другой — растительное масло массой 400 г, начнем их нагревать с помощью одинаковых горелок. Наблюдая за показаниями термометров, мы увидим, что масло нагревается быстрое. Чтобы нагреть воду и масло до одной и той же температуры, воду следует нагревать дольше. Но чем дольше мы нагреваем воду, тем большее количество теплоты она получает от горелки.

Таким образом, для нагревания одной и той же массы разных веществ до одинаковой темпе-ратуры требуется разное количество теплоты. Количество теплоты, необходимое для нагревания тела и, следовательно, его теплоемкость зависят от рода вещества, из которого состоит это тело.

Так, например, чтобы увеличить на 1°С температуру воды массой 1 кг , требуется количество теплоты, равное 4200 Дж , а для нагревания на 1 °С такой же массы подсолнечного масла необхо-димо количество теплоты, равное 1700 Дж.

Физическая величина, показывающая, какое количество теплоты требуется для нагревания 1 кг вещества на 1 ºС, называется удельной теплоемкостью этого вещества.

У каждого вещества своя удельная теплоемкость, которая обозначается латинской буквой с и измеряется в джоулях на килограмм-градус (Дж/(кг ·°С)).

Удельная теплоемкость одного и того же вещества в разных агрегатных состояниях (твердом, жидком и газообразном) различна. Например, удельная теплоемкость воды равна 4200 Дж/(кг · ºС), а удельная теплоемкость льда 2100 Дж/(кг · °С); алюминий в твердом состоянии имеет удельную теплоемкость, равную 920 Дж/(кг - °С), а в жидком — 1080 Дж/(кг - °С).

Заметим, что вода имеет очень большую удельную теплоемкость. Поэтому вода в морях и океанах, нагреваясь летом, поглощает из воздуха большое количество тепла. Благодаря этому в тех местах, которые расположены вблизи больших водоемов, лето не бывает таким жарким, как в местах, удаленных от воды.

Расчет количества теплоты, необходимого для нагревания тела или выделяемого им при охлаждении.

Из вышеизложенного ясно, что количество теплоты, необходимое для нагревания тела, зависит от рода вещества, из которого состоит тело (т. е. его удельной теплоемкости), и от массы тела. Ясно также, что количество теплоты зависит от того, на сколько градусов мы собираемся увеличить температуру тела.

Итак, чтобы определить количество теплоты, необходимое для нагревания тела или выделяемое им при охлаждении, нужно удельную теплоемкость тела умножить на его массу и на разность между его конечной и начальной температурами:

Q = cm (t 2 - t 1 ) ,

где Q — количество теплоты, c — удельная теплоемкость, m — масса тела , t 1 — начальная темпе-ратура, t 2 — конечная температура.

При нагревании тела t 2 > t 1 и, следовательно, Q > 0 . При охлаждении тела t 2и < t 1 и, следовательно, Q < 0 .

В случае, если известна теплоемкость всего тела С , Q определяется по формуле:

Q = C (t 2 - t 1 ) .

На практике часто пользуются тепловыми расчётами. Например, при строительстве зданий необходимо учитывать, какое количество теплоты должна отдавать зданию вся система отопления. Следует также знать, какое количество теплоты будет уходить в окружающее пространство через окна, стены, двери.

Покажем на примерах, как нужно вести простейшие расчёты.

Итак, необходимо узнать, какое количество теплоты получила при нагревании медная деталь. Её масса 2 кг, а температура увеличивалась от 20 до 280 °С. Вначале по таблице 1 определим удельную теплоёмкость меди с м = 400 Дж / кг °С). Это означает, что на нагревание детали из меди массой 1 кг на 1 °С потребуется 400 Дж. Для нагревания медной детали массой 2 кг на 1 °С необходимо в 2 раза большее количество теплоты - 800 Дж. Температуру медной детали необходимо увеличить не на 1 °С, а на 260 °С, значит, потребуется в 260 раз большее количество теплоты, т. е. 800 Дж 260 = 208 000 Дж.

Если обозначить массу m, разность между конечной (t 2) и начальной (t 1) температурами - t 2 - t 1 получим формулу для расчёта количества теплоты:

Q = cm(t 2 - t 1).

Пример 1 . В железный котёл массой 5 кг налита вода массой 10 кг. Какое количество теплоты нужно передать котлу с водой для изменения их температуры от 10 до 100 °С?

При решении задачи нужно учесть, что оба тела - и котёл, и вода - будут нагреваться вместе. Между ними происходит теплообмен. Их температуры можно считать одинаковыми, т. е. температура котла и воды изменяется на 100 °С - 10 °С = 90 °С. Но количества теплоты, полученные котлом и водой, не будут одинаковыми. Ведь их массы и удельные теплоёмкости различны.

Нагревание воды в котелке

Пример 2 . Смешали воду массой 0,8 кг, имеющую температуру 25 °С, и воду при температуре 100 °С массой 0,2 кг. Температуру полученной смеси измерили, и она оказалась равной 40 °С. Вычислите, какое количество теплоты отдала горячая вода при остывании и получила холодная вода при нагревании. Сравните эти количества теплоты.

Запишем условие задачи и решим её.



Мы видим, что количество теплоты, отданное горячей водой, и количество теплоты, полученное холодной водой,равны между собой. Это не случайный результат. Опыт показывает, что если между телами происходит теплообмен, то внутренняя энергия всех нагревающихся тел увеличивается на столько, на сколько уменьшается внутренняя энергия остывающих тел.

При проведении опытов обычно получается, что отданная горячей водой энергия больше энергии, полученной холодной водой. Это объясняется тем, что часть энергии передаётся окружающему воздуху, а часть энергии - сосуду, в котором смешивали воду. Равенство отданной и полученной энергий будет тем точнее, чем меньше потерь энергии допускается в опыте. Если подсчитать и учесть эти потери, то равенство будет точным.

Вопросы

  1. Что нужно знать, чтобы вычислить количество теплоты, полученное телом при нагревании?
  2. Объясните на примере, как рассчитывают количество теплоты, сообщённое телу при его нагревании или выделяющееся при его охлаждении.
  3. Напишите формулу для расчёта количества теплоты.
  4. Какой вывод можно сделать из опыта по смешиванию холодной и горячей воды? Почему на практике эти энергии не равны?

Упражнение 8

  1. Какое количество теплоты требуется для нагревания воды массой 0,1 кг на 1 °С?
  2. Рассчитайте количество теплоты, необходимое для нагревания: а) чугунного утюга массой 1,5 кг для изменения его температуры на 200 °С; б) алюминиевой ложки массой 50 г от 20 до 90 °С; в) кирпичного камина массой 2 т от 10 до 40 °С.
  3. Какое количество теплоты выделилось при остывании воды, объём которой 20 л, если температура изменилась от 100 до 50 °С?

Процесс передачи энергии от одного тела к другому без совершения работы называется теплообменом или теплопередачей . Теплообмен происходит между телами, имеющими разную температуру. При установлении контакта между телами с различными температурами происходит передача части внутренней энергии от тела с более высокой температурой к телу, у которого температура ниже. Энергия, переданная телу в результате теплообмена, называется количеством теплоты .

Удельная теплоемкость вещества:

Если процесс теплопередачи не сопровождается работой, то на основании первого закона термодинамики количество теплоты равно изменению внутренней энергии тела: .

Средняя энергия беспорядочного поступательного движения молекул пропорциональна абсолютной температуре. Изменение внутренней энергии тела равно алгебраической сумме изменений энергии всех атомов или молекул, число которых пропорционально массе тела, поэтому изменение внутренней энергии и, следовательно, количество теплоты пропорционально массе и изменению температуры:


Коэффициент пропорциональности в этом уравнении называется удельной теплоемкостью вещества . Удельная теплоемкость показывает, какое количество теплоты необходимо для нагревания 1 кг вещества на 1 К.

Работа в термодинамике:

В механике работа определяется как произведение модулей силы и перемещения и косинуса угла между ними. Работа совершается при действии силы на движущееся тело и равна изменению его кинетической энергии.

В термодинамике движение тела как целого не рассматривается, речь идет о перемещении частей макроскопического тела относительно друг друга. В результате меняется объем тела, а его скорость остается равной нулю. Работа в термодинамике определяется так же, как и в механике, но равна изменению не кинетической энергии тела, а его внутренней энергии.

При совершении работы (сжатии или расширении) изменяется внутренняя энергия газа. Причина этого состоит в следующем: при упругих соударениях молекул газа с движущимся поршнем изменяется их кинетическая энергия.

Вычислим работу газа при расширении. Газ действует на поршень с силой
, где- давление газа, а- площадь поверхностипоршня. При расширении газа поршень смещается в направлении силына малое расстояние
. Если расстояние мало, то давление газа можно считать постоянным. Работа газа равна:

Где
- изменение объема газа.

В процессе расширения газа совершает положительную работу, так как направление силы и перемещения совпадают. В процессе расширения газ отдает энергию окружающим телам.

Работа, совершаемая внешними телами над газом, отличается от работы газа только знаком
, так как сила, действующая на газ, противоположна силе, с которой газ действует на поршень, и равна ей по модулю (третий закон Ньютона); а перемещение остается тем же самым. Поэтому работа внешних сил равна:

.

Первый закон термодинамики:

Первый закон термодинамики является законом сохранения энергии, распространенным на тепловые явления. Закон сохранения энергии: энергия в природе не возникает из ничего и не исчезает: количество энергии неизменно, она только переходит из одной формы в другую.

В термодинамике рассматриваются тела, положение центра тяжести которых практически не меняется. Механическая энергия таких тел остается постоянной, а изменяться может лишь внутренняя энергия.

Внутренняя энергия может изменяться двумя способами: теплопередачей и совершением работы. В общем случае внутренняя энергия изменяется как за счет теплопередачи, так и за счет совершения работы. Первый закон термодинамики формулируется именно для таких общих случаев:

Изменение внутренней энергии системы при переходе ее из одного состояния в другое равно сумме работы внешних сил и количества теплоты, переданного системе:

Если система изолирована, то над ней не совершается работа и она не обменивается теплотой с окружающими телами. Согласно первому закону термодинамики внутренняя энергия изолированной системы остается неизменной .

Учитывая, что
, первый закон термодинамики можно записать так:

Количество теплоты, переданное системе, идет на изменение ее внутренней энергии и на совершение системой работы над внешними телами .

Второй закон термодинамики: невозможно перевести теплоту от более холодной системы к более горячей при отсутствии других одновременных изменений в обеих системах или в окружающих телах.