Меню
Бесплатно
Главная  /  Медикаменты  /  Химические свойства металлов определение. − разбавленной азотной кислотой. Реакции металлов с кислотами

Химические свойства металлов определение. − разбавленной азотной кислотой. Реакции металлов с кислотами

Под металлами подразумевают группу элементов, которая представлена в виде наиболее простых веществ. Они обладают характерными свойствами, а именно высокой электро- и теплопроводностью, положительным температурным коэффициентом сопротивления, высокой пластичностью и металлическим блеском.

Заметим, что из 118 химических элементов, которые были открыты на данный момент, к металлам следует относить:

  • среди группы щёлочноземельных металлов 6 элементов;
  • среди щелочных металлов 6 элементов;
  • среди переходных металлов 38;
  • в группе лёгких металлов 11;
  • среди полуметаллов 7 элементов,
  • 14 среди лантаноидов и лантан,
  • 14 в группе актиноидов и актиний,
  • Вне определения находятся бериллий и магний.

Исходя из этого, к металлам относятся 96 элементов. Рассмотрим подробней, с чем реагируют металлы. Поскольку на внешнем электронном уровне у большинства металлов находится небольшое количество электронов от 1 до 3-х, то они в большинстве своих реакций могут выступать в качестве восстановителей (то есть они отдают свои электроны другим элементам).

Реакции с наиболее простыми элементами

  • Кроме золота и платины, абсолютно все металлы реагируют с кислородом. Заметим также, что реакция при высоких температурах происходит с серебром, однако оксид серебра(II) при нормальных температурах не образуется. В зависимости от свойств металла, в результате реакции с кислородом образовываются оксиды, надпероксиды и пероксиды.

Приведем примеры каждого из химического образования:

  1. оксид лития – 4Li+O 2 =2Li 2 O;
  2. надпероксид калия – K+O 2 =KO 2 ;
  3. пероксид натрия – 2Na+O 2 =Na 2 O 2 .

Для того, чтобы получить оксид из пероксида, его нужно восстановить тем же металлом. Например, Na 2 O 2 +2Na=2Na 2 O. С малоактивными и со средними металлами подобная реакция будет происходить только при нагревании, к примеру: 3Fe+2O 2 =Fe 3 O 4 .

  • С азотом металлы могут реагировать только с активными металлами, однако при комнатной температуре может взаимодействовать только литий, образуя при этом нитриды – 6Li+N 2 =2Li 3 N, однако при нагревании происходит такая химическая реакция 2Al+N 2 =2AlN, 3Ca+N 2 =Ca 3 N 2 .
  • С серой, как и с кислородом, реагируют абсолютно все металлы, при этом исключением являются золото и платина. Заметим, что железо может взаимодействовать только при нагревании с серой, образовывая при этом сульфид: Fe+S=FeS
  • Только активные металлы могут реагировать с водородом. К ним относятся металлы группы IA и IIA, кроме берилия. Такие реакции могут осуществляться только при нагревании, образовывая гидриды.

    Так как степень окисления водорода считается?1, то металлы в данном случае выступают как восстановители: 2Na+H 2 =2NaH.

  • Реагируют с углеродом также самые активные металлы. В результате этой реакции образовываются ацетилениды или метаниды.

Рассмотрим, какие металлы реагируют с водой и что они дают в результате этой реакции? Ацетилены при взаимодействии с водой будут давать ацетилен, а метан получится в результате реакции воды с метанидами. Приведем примеры данных реакций:

  1. Ацетилен – 2Na+2C= Na 2 C 2 ;
  2. Метан - Na 2 C 2 +2H 2 O=2NaOH+C 2 H 2 .

Реакция кислот с металлами

Металлы с кислотами могут также реагировать по-разному. Со всеми кислотами реагируют только те металлы, которые в ряду стоят электрохимической активности металлов до водорода.

Приведем пример реакции замещения, которая показывает, с чем реагируют металлы. По-другому такая реакция называется окислительно-восстановительной: Mg+2HCl=MgCl 2 +H 2 ^.

Некоторые кислоты могут также взаимодействовать с металлами, которые стоят после водорода: Cu+2H 2 SO 4 =CuSO 4 +SO 2 ^+2H 2 O.

Заметим, что разбавленная такая кислота может реагировать с металлом по приведенной классической схеме: Mg+H 2 SO 4 =MgSO 4 +H 2 ^.

Металлы (от лат. metallum - шахта, рудник) - группа элементов, в виде простых веществ обладающих характерными металлическими свойствами, такими как высокие тепло- и электропроводность, положительный температурный коэффициент сопротивления, высокая пластичность и металлический блеск.

Из 118 химических элементов, открытых на данный момент (из них не все официально признаны), к металлам относят:

  • 6 элементов в группе щелочных металлов,
  • 6 в группе щёлочноземельных металлов,
  • 38 в группе переходных металлов,
  • 11 в группе лёгких металлов,
  • 7 в группе полуметаллов,
  • 14 в группе лантаноиды + лантан,
  • 14 в группе актиноиды (физические свойства изучены не у всех элементов) + актиний,
  • вне определённых групп бериллий и магний.

Таким образом, к металлам, возможно, относится 96 элементов из всех открытых.

В астрофизике термин «металл» может иметь другое значение и обозначать все химические элементы тяжелее гелия

Характерные свойства металлов

  1. Металлический блеск (характерен не только для металлов: его имеют и неметаллы иод и углерод в виде графита)
  2. Хорошая электропроводность
  3. Возможность лёгкой механической обработки
  4. Высокая плотность (обычно металлы тяжелее неметаллов)
  5. Высокая температура плавления (исключения: ртуть, галлий и щелочные металлы)
  6. Большая теплопроводность
  7. В реакциях чаще всего являются восстановителями.

Физические свойства металлов

Все металлы (кроме ртути и, условно, франция) при нормальных условиях находятся в твёрдом состоянии, однако обладают различной твёрдостью. Ниже приводится твёрдость некоторых металлов по шкале Мооса.

Температуры плавления чистых металлов лежат в диапазоне от −39 °C (ртуть) до 3410 °C (вольфрам). Температура плавления большинства металлов (за исключением щелочных) высока, однако некоторые «нормальные» металлы, например олово и свинец, можно расплавить на обычной электрической или газовой плите.

В зависимости от плотности , металлы делят на лёгкие (плотность 0,53 ÷ 5 г/см³) и тяжёлые (5 ÷ 22,5 г/см³). Самым лёгким металлом является литий (плотность 0.53 г/см³). Самый тяжёлый металл в настоящее время назвать невозможно, так как плотности осмия и иридия - двух самых тяжёлых металлов - почти равны (около 22.6 г/см³ - ровно в два раза выше плотности свинца), а вычислить их точную плотность крайне сложно: для этого нужно полностью очистить металлы, ведь любые примеси снижают их плотность.

Большинство металлов пластичны , то есть металлическую проволоку можно согнуть, и она не сломается. Это происходит из-за смещения слоёв атомов металлов без разрыва связи между ними. Самыми пластичными являются золото, серебро и медь. Из золота можно изготовить фольгу толщиной 0.003 мм, которую используют для золочения изделий. Однако не все металлы пластичны. Проволока из цинка или олова хрустит при сгибании; марганец и висмут при деформации вообще почти не сгибаются, а сразу ломаются. Пластичность зависит и от чистоты металла; так, очень чистый хром весьма пластичен, но, загрязнённый даже незначительными примесями, становится хрупким и более твёрдым. Некоторые металлы такие как золото, серебро, свинец, алюминий, осмий могут срастаться между собой, но на это может уйти десятки лет.

Все металлы хорошо проводят электрический ток; это обусловлено наличием в их кристаллических решётках подвижных электронов, перемещающихся под действием электрического поля. Серебро, медь и алюминий имеют наибольшую электропроводность; по этой причине последние два металла чаще всего используют в качестве материала для проводов. Очень высокую электропроводность имеет также натрий, в экспериментальной аппаратуре известны попытки применения натриевых токопроводов в форме тонкостенных труб из нержавеющей стали, заполненных натрием. Благодаря малому удельному весу натрия, при равном сопротивлении натриевые «провода» получаются значительно легче медных и даже несколько легче алюминиевых.

Высокая теплопроводность металлов также зависит от подвижности свободных электронов. Поэтому ряд теплопроводностей похож на ряд электропроводностей и лучшим проводником тепла, как и электричества, является серебро. Натрий также находит применение как хороший проводник тепла; широко известно, например, применение натрия в клапанах автомобильных двигателей для улучшения их охлаждения.

Цвет у большинства металлов примерно одинаковый - светло-серый с голубоватым оттенком. Золото, медь и цезий соответственно жёлтого, красного и светло-жёлтого цвета.

Химические свойства металлов

На внешнем электронном уровне у большинства металлов небольшое количество электронов (1-3), поэтому они в большинстве реакций выступают как восстановители (то есть «отдают» свои электроны)

Реакции с простыми веществами

  • С кислородом реагируют все металлы, кроме золота, платины. Реакция с серебром происходит при высоких температурах, но оксид серебра(II) практически не образуется, так как он термически неустойчив. В зависимости от металла на выходе могут оказаться оксиды, пероксиды, надпероксиды:

оксид лития

пероксид натрия

надпероксид калия

Чтобы получить из пероксида оксид, пероксид восстанавливают металлом:

Со средними и малоактивными металлами реакция происходит при нагревании:

  • С азотом реагируют только самые активные металлы, при комнатной температуре взаимодействует только литий, образуя нитриды:

При нагревании:

  • С серой реагируют все металлы, кроме золота и платины:

Железо взаимодействует с серой при нагревании, образуя сульфид:

  • С водородом реагируют только самые активные металлы, то есть металлы IA и IIA групп кроме Be. Реакции осуществляются при нагревании, при этом образуются гидриды. В реакциях металл выступает как восстановитель, степень окисления водорода −1:
  • С углеродом реагируют только наиболее активные металлы. При этом образуются ацетилениды или метаниды. Ацетилениды при взаимодействии с водой дают ацетилен, метаниды - метан.

Строение атомов металлов определяет не только характерные физические свойства простых веществ – металлов, но и общие их химические свойства.

При большом многообразии все химические реакции металлов относятся к окислительно-восстановительным и могут быть только двух типов: соединения и замещения. Металлы способны при химических реакциях отдавать электроны, то есть быть восстановителями, проявлять в образовавшихся соединениях только положительную степень окисления.

В общем виде это можно выразить схемой:
Ме 0 – ne → Me +n ,
где Ме – металл – простое вещество, а Ме 0+n – металл химический элемент в соединении.

Металлы способны отдавать свои валентные электроны атомам неметаллов, ионам водорода, ионам других металлов, а поэтому будут реагировать с неметаллами – простыми веществами, водой, кислотами, солями. Однако восстановительная способность металлов различна. Состав продуктов реакции металлов с различными веществами зависит и от окислительной способности веществ и условий, при которых протекает реакция.

При высоких температурах большинство металлов сгорает в кислороде:

2Mg + O 2 = 2MgO

Не окисляются в этих условиях только золото, серебро, платина и некоторые другие металлы.

С галогенами многие металлы реагируют без нагревания. Например, порошок алюминия при смешивании с бромом загорается:

2Al + 3Br 2 = 2AlBr 3

При взаимодействии металлов с водой в некоторых случаях образуются гидроксиды. Очень активно при обычных условиях взаимодействуют с водой щелочные металлы, а также кальций, стронций, барий. Схема этой реакции в общем виде выглядит так:

Ме + HOH → Me(OH) n + H 2

Другие металлы реагируют с водой при нагревании: магний при её кипении, железо в парах воды при красном кипении. В этих случаях получаются оксиды металлов.

Если металл реагирует с кислотой, то он входит в состав образующейся соли. Когда металл взаимодействует с растворами кислоты, он может окисляться ионами водорода, имеющимися в этом растворе. Сокращённое ионное уравнение в общем виде можно записать так:

Me + nH + → Me n + + H 2

Более сильными окислительными свойствами, чем ионы водорода, обладают анионы таких кислородосодержащих кислот, как например, концентрированная серная и азотная. Поэтому с этими кислотами реагируют те металлы, которые не способны окисляться ионами водорода, например, медь и серебро.

При взаимодействии металлов с солями происходит реакция замещения: электроны от атомов замещающего – более активного металла переходят к ионам замещаемого – менее активного металла. То сеть происходит замещение металла металлом в солях. Данные реакции не обратимы: если металл А вытесняет металл В из раствора солей, то металл В не будет вытеснять металл А из раствора солей.

В порядке убывания химической активности, проявляемой в реакциях вытеснения металлов друг друга из водных растворов их солей, металлы располагаются в электрохимическом ряду напряжений (активности) металлов:

Li → Rb → K → Ba → Sr → Ca → Na→ Mg → Al → Mn → Zn → Cr → → Fe → Cd→ Co → Ni → Sn → Pb → H → Sb → Bi → Cu → Hg → Ag → Pd → Pt → Au

Металлы, расположенные в этом ряду левее, более активны и способны вытеснять следующие за ними металлы из растворов солей.

В электрохимический ряд напряжений металлов включён водород, как единственный неметалл, разделяющий с металлами общее свойство - образовывать положительно заряженные ионы. Поэтому водород замещает некоторые металлы в их солях и сам может замещаться многими металлами в кислотах, например:

Zn + 2 HCl = ZnCl 2 + H 2 + Q

Металлы, стоящие в электрохимическом ряду напряжений до водорода, вытесняют его из растворов многих кислот (соляной, серной и др.), а все следующие за ним, например, медь не вытесняют.

blog.сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Атомы металлов сравнительно легко отдают валентные электроны и переходят в положительно заряженные ионы. Поэтому металлы являются восстановителями. Металлы взаимодействуют с простыми веществами: Са + С12 - СаС12, Активные металлы реагируют с водой: 2Na + 2Н20 = 2NaOH + H2f. Металлы, стоящие в ряду стандартных электродных потенциалов до водорода, взаимодействуют с разбавленными растворами кислот (кроме HN03) с выделением водорода: Zn + 2НС1 = ZnCl2 + H2f. Металлы реагируют с водными растворами солей менее активных металлов: Ni + CuS04 = NiS04 + Си J. Металлы реагируют с кислотами-окислителями: С. Способы получения металлов Современная металлургия получает более 75 металлов и многочисленные сплавы на их основе. В зависимости от способов получения металлов различают пирогидро- и электрометаллургию. ГГ) Пирометаллургия охватывает способы получения металлов из руд с помощью реакций восстановления, проводимых при высоких температурах. В качестве восстановителей применяют уголь, активные металлы, оксид углерода (II), водород, метан. Cu20 + С - 2Си + СО, t° Cu20 + СО - 2Cu + С02, t° Сг203 + 2А1 - 2Сг + А1203, (алюмотермия) t° TiCl2 + 2Mg - Ti + 2MgCl2, (магнийтермия) t° W03 + 3H2 = W + 3H20. (водородотермия) |Ц Гидрометаллургия - это получение металлов из растворов их солей. Например, при обработке разбавленной серной кислотой медной руды, содержащей оксид меди (И), медь переходит в раствор в виде сульфата: CuO + H2S04 = CuS04 + Н20. Затем медь извлекают из раствора либо электролизом, либо вытеснением с помощью порошка железа: CuS04 + Fe = FeS04 + Си. [з] Электрометаллургия - это способы получения металлов из их расплавленных оксидов или солей с помощью электролиза: электролиз 2NaCl - 2Na + Cl2. Вопросы и задачи для самостоятельного решения 1. Укажите положение металлов в периодической системе Д. И. Менделеева. 2. Покажите физические и химические свойства металлов. 3. Объясните причину общности свойств металлов. 4. Покажите изменение химической активности металлов главных подгрупп I и II групп периодической системы. 5. Каким образом изменяются металлические свойства у элементов II и III периодов? Назовите самый тугоплавкий и самый легкоплавкий металлы. 7. Укажите, какие металлы встречаются в природе в самородном состоянии и какие - только в виде соединений. Чем это можно объяснить? 8. Какова природа сплавов? Как состав сплава влияет на его свойства. Покажите на конкретных примерах. Укажите важнейшие способы получения металлов из руд. 10l Назовите разновидности пирометаллургии. Какие восстановители используют в каждом конкретном способе? Почему? 11. Назовите металлы, которые получают с помощью гидрометаллургии. В чем сущность и каковы преимущества данного метода перед другими? 12. Приведите примеры получения металлов с помощью электрометаллургии. В каком случае используют этот способ? 13. Каковы современные способы получения металлов высокой степени чистоты? 14. Что такое «электродный потенциал»? Какой из металлов имеет наибольший и какой - наименьший электродные потенциалы в водном растворе? 15. Охарактеризуйте ряд стандартных электродных потенциалов? 16. Можно ли вытеснить металлическое железо из водного раствора его сульфата с помощью металлического цинка, никеля, натрия? Почему? 17. Каков принцип работы гальванических элементов? Какие металлы могут в них использоваться? 18. Какие процессы относятся к коррозионным? Какие виды коррозии вам известны? 19. Что называется электрохимической коррозией? Какие способы защиты от нее вам известны? 20. Как влияет на коррозию железа его контакт с другими металлами? Какой металл будет разрушаться первым на поврежденной поверхности луженого, оцинкованного и никелированного железа? 21. Какой процесс называют электролизом? Напишите реакции, отражающие процессы, происходящие на катоде и аноде при электролизе расплава хлорида натрия, водных растворов хлорида натрия, сульфата меди, сульфата натрия, серной кислоты. 22. Какую роль играет материал электродов при протекании процессов электролиза? Приведите примеры процессов электролиза, протекающих с растворимыми и нерастворимыми электродами. 23. Сплав, идущий на приготовление медных монет, содержит 95 % меди. Определите второй металл, входящий в сплав, если при обработке однокопеечной монеты избытком соляной кислоты выделилось 62,2 мл водорода (н. у.). алюминий. 24. Навеска карбида металла массой 6 г сожжена в кислороде. При этом образовалось 2,24 л оксида углерода (IV) (н. у.). Определите, какой металл входил в состав карбида. 25. Покажите, какие продукты выделятся при электролизе водного раствора сульфата никеля, если процесс протекает: а) с угольными; б) с никелевыми электродами? 26. При электролизе водного раствора медного купороса на аноде выделилось 2,8 л газа (н. у.). Какой это газ? Что и в каком количестве выделилось на катоде? 27. Составьте схему электролиза водного раствора нитрата калия, протекающего на электродах. Чему равно количество пропущенного электричества, если на аноде выделилось 280 мл газа (н. у.)? Что и в каком количестве выделилось на катоде?

ХИМИЧЕСКИЕ СВОЙСТВА МЕТАЛЛОВ

По химическим свойствам металлы подразделяют на:

1 )Активные (щелочные и щелчноземельные металлы, Mg, Al, Zn и др.)

2) Металлы средней активности (Fe, Cr, Mn и др.) ;

3 )Малоактивные (Cu, Ag)

4) Благородные металлы – Au, Pt, Pd и др.

В реакциях - только восстановители. Атомы металлов легко отдают электроны внешнего (а некоторые – и предвнешнего) электронного слоя, превращаясь в положительные ионы. Возможные степени окисления Ме Низшая 0,+1,+2,+3 Высшая +4,+5,+6,+7,+8

1.ВЗАИМОДЕЙСТВИЕ С НЕМЕТАЛЛАМИ

1. С ВОДОРОДОМ

Реагируют при нагревании металлы IA и IIA группы, кроме бериллия. Образуются твёрдые нестойкие вещества гидриды, остальные металлы не реагируют.

2K + H₂ = 2KH (гидрид калия)

Ca + H₂ = CaH₂

2.С КИСЛОРОДОМ

Реагируют все металлы, кроме золота, платины. Реакция с серебром происходит при высоких температурах, но оксид серебра(II) практически не образуется, так как он термически неустойчив. Щелочные металлы при нормальных условиях образуют оксиды, пероксиды, надпероксиды (литий – оксид, натрий – пероксид, калий, цезий, рубидий – надпероксид

4Li + O2 = 2Li2O (оксид)

2Na + O2 = Na2O2 (пероксид)

K+O2=KO2 (надпероксид)

Остальные металлы главных подрупп при нормальных условиях образуют оксиды со степенью окисления, равной номеру группы 2Сa+O2=2СaO

2Сa+O2=2СaO

Металлы побочных подрупп образуют оксиды при нормальных условиях и при нагревании оксиды разной степени окисления, а железо железную окалину Fe3O4 (Fe⁺²O∙Fe2⁺³O3)

3Fe + 2O2 = Fe3O4

4Cu + O₂ = 2Cu₂⁺¹O (красный) 2Cu + O₂ = 2Cu⁺²O (чѐрный);

2Zn + O₂ = ZnO 4Cr + 3О2 = 2Cr2О3

3. С ГАЛОГЕНАМИ

галогениды (фториды, хлориды, бромиды, иодиды). Щелочные при нормальных условиях с F, Cl , Br воспламеняются:

2Na + Cl2 = 2NaCl (хлорид)

Щелочноземельные и алюминий реагируют при нормальных условиях:

С a+Cl2= С aCl2

2Al+3Cl2 = 2AlCl3

Металлы побочных подгрупп при повышенных температурах

Cu + Cl₂ = Cu⁺²Cl₂ Zn + Cl₂ = ZnCl₂

2Fe + ЗС12 = 2Fe⁺³Cl3 хлорид железа (+3) 2Cr + 3Br2 = 2Cr⁺³Br3

2Cu + I₂ = 2Cu⁺¹I (не бывает йодида меди (+2)!)

4. ВЗАИМОДЕЙСТВИЕ С СЕРОЙ

при нагревании даже у щелочных металлов, с ртутью при нормальных условиях. Реагируют все металлы, кроме золота и платины

с серой сульфиды : 2K + S = K2S 2Li+S = Li2S ( сульфид )

С a+S= С aS( сульфид ) 2Al+3S = Al2S3 Cu + S = Cu⁺²S (чѐрный )

Zn + S = ZnS 2Cr + 3S = Cr2⁺³S3 Fe + S = Fe⁺²S

5. ВЗАИМОДЕЙСТВИЕ С ФОСФОРОМ И АЗОТОМ

протекает при нагревании (исключение: литий с азотом при нормальных условиях) :

с фосфором – фосфиды: 3 Ca + 2 P =Са3 P 2,

С азотом – нитриды 6Li + N2 = 3Li2N (нитрид лития) (н.у.) 3Mg + N2 = Mg3N2 (нитрид магния) 2Al + N2 = 2A1N 2Cr + N2 = 2CrN 3Fe + N2 = Fe₃⁺²N₂¯³

6. ВЗАИМОДЕЙСТВИЕ С УГЛЕРОДОМ И КРЕМНИЕМ

протекает при нагревании:

С углеродом образуются карбиды С углеродом реагируют только наиболее активные металлы. Из щелочных металлов карбиды образуют литий и натрий, калий, рубидий, цезий не взаимодействуют с углеродом:

2Li + 2C = Li2C2, Са + 2С = СаС2

Металлы – d-элементы образуют с углеродом соединения нестехиометрического состава типа твердых растворов: WC, ZnC, TiC – используются для получения сверхтвёрдых сталей.

с кремнием – силициды: 4Cs + Si = Cs4Si,

7. ВЗАИМОДЕЙСТВИЕ МЕТАЛЛОВ С ВОДОЙ:

С водой реагируют металлы, стоящие до водорода в электрохимическом ряду напряжений Щелочные и щелочноземельные металлы реагируют с водой без нагревания, образуя растворимые гидроксиды(щелочи) и водород, алюминий (после разрушения оксидной пленки - амальгирование), магний при нагревании, образуют нерастворимые основания и водород.

2Na + 2HOH = 2NaOH + H2
С a + 2HOH = Ca(OH)2 + H2

2Аl + 6Н2O = 2Аl(ОН)3 + ЗН2

Остальные металлы реагируют с водой только в раскаленном состоянии, образуя оксиды (железо – железную окалину)

Zn + Н2O = ZnO + H2 3Fe + 4HOH = Fe3O4 + 4H2 2Cr + 3H₂O = Cr₂O₃ + 3H₂

8 С КИСЛОРОДОМ И ВОДОЙ

На воздухе железо и хром легко окисляется в присутствии влаги (ржавление)

4Fe + 3O2 + 6H2O = 4Fe(OH)3

4Cr + 3O2 + 6H2O = 4Cr(OH)3

9. ВЗАИМОДЕЙСТВИЕ МЕТАЛЛОВ С ОКСИДАМИ

Металлы (Al, Mg,Са), восстанавливают при высокой температуре неметаллы или менее активные металлы из их оксидов → неметалл или малоактивный металл и оксид (кальцийтермия, магнийтермия, алюминотермия)

2Al + Cr2O3 = 2Cr + Al2O3 ЗСа + Cr₂O₃ = ЗСаО + 2Cr (800 °C) 8Al+3Fe3O4 = 4Al2O3+9Fe (термит) 2Mg + CО2 = 2MgO + С Mg + N2O = MgO + N2 Zn + CО2 = ZnO+ CO 2Cu + 2NO = 2CuO + N2 3Zn + SО2 = ZnS + 2ZnO

10. С ОКСИДАМИ

Металлы железо и хром реагируют со оксидами, уменьшая степень окисления

Cr + Cr2⁺³O3 = 3Cr⁺²O Fe+ Fe2⁺³O3 = 3Fe⁺²O

11. ВЗАИМОДЕЙСТВИЕ МЕТАЛЛОВ СО ЩЕЛОЧАМИ

Со щелочами взаимодействуют только те металлы, оксиды и гидроксиды которых обладают амфотерными свойствами ((Zn, Al, Cr(III), Fe(III) и др. РАСПЛАВ → соль металла + водород.

2NaOH + Zn → Na2ZnO2 + H2 (цинкат натрия)

2Al + 2(NaOH · H2O) = 2NaAlO2 + 3H2
РАСТВОР → комплексная соль металла + водород.

2NaOH + Zn0 + 2H2O = Na2 + H2 (тетрагидроксоцинкат натрия) 2Al+2NaOH + 6H2O = 2Na+3H2

12. ВЗАИМОДЕЙСТВИЕ С КИСЛОТАМИ (КРОМЕ HNO3 и Н2SО4 (конц.)

Металлы, стоящие в электрохимическом ряду напряжений металлов левее водорода, вытесняют его из разбавленных кислот → соль и водород

Запомни! Азотная кислота никогда не выделяет водород при взаимодействии с металлами.

Мg + 2НС1 = МgСl2 + Н2
Al + 2НС1 = Al⁺³Сl₃ + Н2

13. РЕАКЦИИ С СОЛЯМИ

Активные металлы вытесняют из солей менее активные. Восстановление из растворов:

CuSO4 + Zn = Zn SO4 + Cu

FeSO4 + Cu = РЕАКЦИИ НЕТ

Mg + CuCl2(pp) = MgCl2 + С u

Восстановление металлов из расплавов их солей

3Na+ AlCl₃ = 3NaCl + Al

TiCl2 + 2Mg = MgCl2 +Ti

Металлы групп В реагируют с солями, понижая степень окислениЯ

2Fe⁺³Cl3 + Fe = 3Fe⁺²Cl2