Меню
Бесплатно
Главная  /  Профилактика  /  Алгоритмы и структуры данных для начинающих: сложность алгоритмов. Разрабатываем алгоритмы действий и создаем блок-схемы Системная последовательность направленная на определенный результат действий

Алгоритмы и структуры данных для начинающих: сложность алгоритмов. Разрабатываем алгоритмы действий и создаем блок-схемы Системная последовательность направленная на определенный результат действий

Алгоритм

Часто в качестве исполнителя выступает некоторый механизм (компьютер, токарный станок, швейная машина), но понятие алгоритма необязательно относится к компьютерным программам , так, например, чётко описанный рецепт приготовления блюда также является алгоритмом, в таком случае исполнителем является человек.

Понятие алгоритма относится к первоначальным, основным, базисным понятиям математики. Вычислительные процессы алгоритмического характера (арифметические действия над целыми числами, нахождение наибольшего общего делителя двух чисел и т. д.) известны человечеству с глубокой древности. Однако, в явном виде понятие алгоритма сформировалось лишь в начале XX века.

Частичная формализация понятия алгоритма началась с попыток решения проблемы разрешения (нем. Entscheidungsproblem ), которую сформулировал Давид Гильберт в 1928 году . Следующие этапы формализации были необходимы для определения эффективных вычислений или «эффективного метода» ; среди таких формализаций - рекурсивные функции Геделя - Эрбрана - Клини , и гг., λ-исчисление Алонзо Чёрча г., «Формулировка 1 » Эмиля Поста 1936 года и машина Тьюринга . В методологии алгоритм является базисным понятием и получает качественно новое понятие как оптимальности по мере приближения к прогнозируемому абсолюту. В современном мире алгоритм в формализованном выражении составляет основу образования на примерах, по подобию. На основе сходства алгоритмов различных сфер деятельности была сформирована концепция (теория) экспертных систем.

История термина

Современное формальное определение алгоритма было дано в 30-50-е годы XX века в работах Тьюринга , Поста , Чёрча (тезис Чёрча - Тьюринга), Н. Винера , А. А. Маркова .

Само слово «алгоритм» происходит от имени хорезмского учёного Абу Абдуллах Мухаммеда ибн Муса аль-Хорезми (алгоритм - аль-Хорезми). Около 825 года он написал сочинение, в котором впервые дал описание придуманной в Индии позиционной десятичной системы счисления. К сожалению, персидский оригинал книги не сохранился. Аль-Хорезми сформулировал правила вычислений в новой системе и, вероятно, впервые использовал цифру 0 для обозначения пропущенной позиции в записи числа (её индийское название арабы перевели как as-sifr или просто sifr , отсюда такие слова, как «цифра» и «шифр»). Приблизительно в это же время индийские цифры начали применять и другие арабские учёные. В первой половине XII века книга аль-Хорезми в латинском переводе проникла в Европу. Переводчик, имя которого до нас не дошло, дал ей название Algoritmi de numero Indorum («Алгоритмы о счёте индийском»). По-арабски же книга именовалась Китаб аль-джебр валь-мукабала («Книга о сложении и вычитании»). Из оригинального названия книги происходит слово Алгебра (алгебра - аль-джебр - восполнение).

Таким образом, мы видим, что латинизированное имя среднеазиатского учёного было вынесено в заглавие книги, и сегодня считается, что слово «алгоритм» попало в европейские языки именно благодаря этому сочинению. Однако вопрос о его смысле длительное время вызывал ожесточённые споры. На протяжении многих веков происхождению слова давались самые разные объяснения.

Одни выводили algorism из греческих algiros (больной) и arithmos (число). Из такого объяснения не очень ясно, почему числа именно «больные». Или же лингвистам больными казались люди, имеющие несчастье заниматься вычислениями? Своё объяснение предлагал и энциклопедический словарь Брокгауза и Ефрона . В нём алгорифм (кстати, до революции использовалось написание алгориѳм , через фиту) производится «от арабского слова Аль-Горетм, то есть корень». Разумеется, эти объяснения вряд ли можно счесть убедительными.

Упомянутый выше перевод сочинения аль-Хорезми стал первой ласточкой, и в течение нескольких следующих столетий появилось множество других трудов, посвящённых всё тому же вопросу - обучению искусству счёта с помощью цифр. И все они в названии имели слово algoritmi или algorismi .

Про аль-Хорезми позднейшие авторы ничего не знали, но поскольку первый перевод книги начинается словами: «Dixit algorizmi: …» («Аль-Хорезми говорил: …»), всё ещё связывали это слово с именем конкретного человека. Очень распространённой была версия о греческом происхождении книги. В англо-норманнской рукописи XIII века , написанной в стихах, читаем:

Алгоритм - это искусство счёта с помощью цифр, но поначалу слово «цифра» относилось только к нулю. Знаменитый французский трувер Готье де Куанси (Gautier de Coincy, 1177-1236) в одном из стихотворений использовал слова algorismus-cipher (которые означали цифру 0) как метафору для характеристики абсолютно никчёмного человека. Очевидно, понимание такого образа требовало соответствующей подготовки слушателей, а это означает, что новая система счисления уже была им достаточно хорошо известна.

Многие века абак был фактически единственным средством для практичных вычислений, им пользовались и купцы, и менялы, и учёные. Достоинства вычислений на счётной доске разъяснял в своих сочинениях такой выдающийся мыслитель, как Герберт Аврилакский (938-1003), ставший в 999 г. папой римским под именем Сильвестра II. Новое с огромным трудом пробивало себе дорогу, и в историю математики вошло упорное противостояние лагерей алгорисмиков и абацистов (иногда называемых гербекистами), которые пропагандировали использование для вычислений абака вместо арабских цифр. Интересно, что известный французский математик Николя Шюке (Nicolas Chuquet, 1445-1488) в реестр налогоплательщиков города Лиона был вписан как алгорисмик (algoriste). Но прошло не одно столетие, прежде чем новый способ счёта окончательно утвердился, столько времени потребовалось, чтобы выработать общепризнанные обозначения, усовершенствовать и приспособить к записи на бумаге методы вычислений. В Западной Европе учителей арифметики вплоть до XVII века продолжали называть «магистрами абака», как, например, математика Никколо Тарталью (1500-1557).

Итак, сочинения по искусству счёта назывались Алгоритмами . Из многих сотен можно выделить и такие необычные, как написанный в стихах трактат Carmen de Algorismo (латинское carmen и означает стихи) Александра де Вилла Деи (Alexander de Villa Dei, ум. 1240) или учебник венского астронома и математика Георга Пурбаха (Georg Peurbach, 1423-1461) Opus algorismi jocundissimi («Веселейшее сочинение по алгоритму»).

Постепенно значение слова расширялось. Учёные начинали применять его не только к сугубо вычислительным, но и к другим математическим процедурам. Например, около 1360 г. французский философ Николай Орем (Nicolaus Oresme, 1323/25-1382) написал математический трактат Algorismus proportionum («Вычисление пропорций»), в котором впервые использовал степени с дробными показателями и фактически вплотную подошёл к идее логарифмов. Когда же на смену абаку пришёл так называемый счёт на линиях, многочисленные руководства по нему стали называть Algorithmus linealis , то есть правила счёта на линиях.

Можно обратить внимание на то, что первоначальная форма algorismi спустя какое-то время потеряла последнюю букву, и слово приобрело более удобное для европейского произношения вид algorism . Позднее и оно, в свою очередь, подверглось искажению, скорее всего, связанному со словом arithmetic .

Машина Тьюринга

Основная идея, лежащая в основе машины Тьюринга, очень проста. Машина Тьюринга - это абстрактная машина (автомат), работающая с лентой отдельных ячеек, в которых записаны символы. Машина также имеет головку для записи и чтения символов из ячеек, которая может двигаться вдоль ленты. На каждом шагу машина считывает символ из ячейки, на которую указывает головка, и, на основе считанного символа и внутреннего состояния, делает следующий шаг. При этом, машина может изменить свое состояние, записать другой символ в ячейку или передвинуть головку на одну ячейку вправо или влево.

На основе исследования этих машин был выдвинут тезис Тьюринга (основная гипотеза алгоритмов):

Этот тезис является аксиомой, постулатом, и не может быть доказан математическими методами, поскольку алгоритм не является точным математическим понятием.

Рекурсивные функции

С каждым алгоритмом можно сопоставить функцию, которую он вычисляет. Однако возникает вопрос, можно ли произвольной функции сопоставить машину Тьюринга, а если нет, то для каких функций существует алгоритм? Исследования этих вопросов привели к созданию в 1930-х годах теории рекурсивных функций .

Класс вычислимых функций был записан в образ, напоминающий построение некоторой аксиоматической теории на базе системы аксиом. Сначала были выбраны простейшие функции, вычисление которых очевидно. Затем были сформулированы правила (операторы) построения новых функций на основе уже существующих. Необходимый класс функций состоит из всех функций, которые можно получить из простейших применением операторов.

Подобно тезису Тьюринга в теории вычислительных функций была выдвинута гипотеза, которая называется тезис Чёрча :

Доказательство того, что класс вычислимых функций совпадает с исчисляемыми по Тьюрингу, происходит в два шага: сначала доказывают вычисление простейших функций на машине Тьюринга, а затем - вычисление функций, полученных в результате применения операторов.

Таким образом, неформально алгоритм можно определить как четкую систему инструкций, определяющих дискретный детерминированный процесс, который ведет от начальных данных (на входе) к искомому результату (на выходе), если он существует, за конечное число шагов; если искомого результата не существует, алгоритм или никогда не завершает работу, либо заходит в тупик.

Нормальный алгоритм Маркова

Нормальный алгоритм Маркова - это система последовательных применений подстановок, которые реализуют определенные процедуры получения новых слов из базовых, построенных из символов некоторого алфавита. Как и машина Тьюринга, нормальные алгоритмы не выполняют самих вычислений: они лишь выполняют преобразование слов путем замены букв по заданным правилам .

Нормально вычислимой называют функцию, которую можно реализовать нормальным алгоритмом. То есть, алгоритмом, который каждое слово из множества допустимых данных функции превращает в ее исходные значения ..

Создатель теории нормальных алгоритмов А. А. Марков выдвинул гипотезу, которая получила название принцип нормализации Маркова:

Подобно тезисам Тьюринга и Черча, принцип нормализации Маркова не может быть доказан математическими средствами.

Стохастические алгоритмы

Однако, приведенное выше формальное определение алгоритма в некоторых случаях может быть слишком строгим. Иногда возникает потребность в использовании случайных величин . Алгоритм, работа которого определяется не только исходными данными, но и значениями, полученными из генератора случайных чисел , называют стохастическим (или рандомизированным, от англ. randomized algorithm ) . Формально, такие алгоритмы нельзя называть алгоритмами, поскольку существует вероятность (близкая к нулю), что они не остановятся. Однако, стохастические алгоритмы часто бывают эффективнее детерминированных, а в отдельных случаях - единственным способом решить задачу .

На практике вместо генератора случайных чисел используют генератор псевдослучайных чисел .

Однако следует отличать стохастические алгоритмы и методы, которые дают с высокой вероятностью правильный результат. В отличие от метода , алгоритм дает корректные результаты даже после продолжительной работы.

Некоторые исследователи допускают возможность того, что стохастический алгоритм даст с некоторой заранее известной вероятностью неправильный результат. Тогда стохастические алгоритмы можно разделить на два типа :

  • алгоритмы типа Лас-Вегас всегда дают корректный результат, но время их работы не определено.
  • алгоритмы типа Монте-Карло , в отличие от предыдущих, могут давать неправильные результаты с известной вероятностью (их часто называют методами Монте-Карло ).

Другие формализации

Для некоторых задач названные выше формализации могут затруднять поиск решений и осуществление исследований. Для преодоления препятствий были разработаны как модификации «классических» схем, так и созданы новые модели алгоритма. В частности, можно назвать:

  • многоленточная и недетерминированная машины Тьюринга;
  • регистровая и РАМ машина - прототип современных компьютеров и виртуальных машин;

и другие.

Формальные свойства алгоритмов

Различные определения алгоритма в явной или неявной форме содержат следующий ряд общих требований:

Виды алгоритмов

Особую роль выполняют прикладные алгоритмы, предназначенные для решения определённых прикладных задач. Алгоритм считается правильным, если он отвечает требованиям задачи (например, даёт физически правдоподобный результат). Алгоритм (программа) содержит ошибки, если для некоторых исходных данных он даёт неправильные результаты, сбои, отказы или не даёт никаких результатов вообще. Последний тезис используется в олимпиадах по алгоритмическому программированию , чтобы оценить составленные участниками программы.

Случай, когда результатом вычисления функции является логическое выражение «истина» или «ложь» (или множество {0, 1}), называют задачей, которая может быть решаемой или нерешаемой в зависимости от вычислимости функции .

Важно точно указывать допустимое множество входных данных, поскольку задача может быть решаемой для одного множества и нерешаемой для другого.

Одной из первых задач, для которой была доказана нерешаемость, является проблема остановки . Формулируется она следующим образом:

Доказательство неразрешимости проблемы остановки важно тем, что к ней можно свести другие задачи. Например, простую проблему остановки можно свести к задаче остановки на пустой строке (когда нужно определить для заданной машины Тьюринга, остановится ли она, будучи запущенной на пустой строке), доказав тем самым неразрешимость последней. .

Анализ алгоритмов

Вместе с распространением информационных технологий увеличился риск программных сбоев. Одним из способов избежания ошибок в алгоритмах и их реализациях служат доказательства корректности систем математическими средствами.

Использование математического аппарата для анализа алгоритмов и их реализаций называют формальными методами. Формальные методы предусматривают применение формальных спецификаций и, обычно, набора инструментов для синтаксического анализа и доказательства свойств спецификаций. Абстрагирование от деталей реализации позволяет установить свойства системы независимо от ее реализации. Кроме того, точность и однозначность математических утверждений позволяет избежать многозначности и неточности естественных языков .

По гипотезе Ричарда Мейса, «избежание ошибок лучше устранения ошибок» . По гипотезе Хоара, «доказательство программ решает проблему корректности, документации и совместимости» . Доказательство корректности программ позволяет выявлять их свойства по отношению ко всему диапазону входных данных. Для этого понятие корректности было разделено на два типа:

  • Частичная корректность - программа дает правильный результат для тех случаев, когда она завершается.
  • Полная корректность - программа завершает работу и выдает правильный результат для всех элементов из диапазона входных данных.

Во время доказательства корректности сравнивают текст программы со спецификацией желаемого соотношения входных-выходных данных. Для доказательств типа Хоара эта спецификация имеет вид утверждений, которые называют предусловиями и постусловиями. В совокупности с самой программой, их еще называют тройкой Хоара. Эти утверждения записывают

P {Q }R

где P - это предусловие, что должно выполняться перед запуском программы Q , а R - постусловие, правильное после завершения работы программы.

Формальные методы были успешно применены для широкого круга задач, в частности: разработке электронных схем, искусственного интеллекта, автоматических систем на железной дороге, верификации микропроцессоров , спецификации стандартов и спецификации и верификации программ .

Время работы

Распространенным критерием оценки алгоритмов является время работы и порядок роста продолжительности работы в зависимости от объема входных данных.

Для каждой конкретной задачи составляют некоторое число, которое называют ее размером. Например, размером задачи вычисления произведения матриц может быть наибольший размер матриц-множителей, для задач на графах размером может быть количество ребер графа.

Время, которое тратит алгоритм как функция от размера задачи , называют временной сложностью этого алгоритма T (n ). Асимптотику поведения этой функции при увеличении размера задачи называют асимптотичной временной сложностью, а для ее обозначения используют специальную нотацию .

Именно асимптотическая сложность определяет размер задач, которые алгоритм способен обработать. Например, если алгоритм обрабатывает входные данные размером за время cn ², где c - некоторая константа , то говорят, что временная сложность такого алгоритма O (n ²).

Часто, во время разработки алгоритма пытаются уменьшить асимптотическую временную сложность для наихудших случаев. На практике же бывают случаи, когда достаточным является алгоритм, который «обычно» работает быстро.

Грубо говоря, анализ средней асимптотической временной сложности можно разделить на два типа: аналитический и статистический. Аналитический метод дает более точные результаты, но сложен в использовании на практике. Зато статистический метод позволяет быстрее осуществлять анализ сложных задач .

В следующей таблице приведены распространенные асимптотические сложности с комментариями .


Сложность Комментарий Примеры
O (1) Устойчивое время работы не зависит от размера задачи Ожидаемое время поиска в в хеш-таблице
O (log log n ) Очень медленный рост необходимого времени Ожидаемое время работы интерполирующего поиска n элементов
O (log n ) Логарифмический рост - удвоение размера задачи увеличивает время работы на постоянную величину Вычисление x n ; Двоичный поиск в массиве из n элементов
O (n ) Линейный рост - удвоение размера задачи удвоит и необходимое время Сложение/вычитание чисел из n цифр; Линейный поиск в массиве из n элементов
O (n log n ) Линеаритмичный рост - удвоение размера задачи увеличит необходимое время чуть более чем вдвое Сортировка слиянием или кучей n элементов; нижняя граница сортировки сопоставлением n элементов
O (n ²) Квадратичный рост - удвоение размера задачи увеличивает необходимое время в четыре раза Элементарные алгоритмы сортировки
O (n ³) Кубичный рост - удвоение размера задачи увеличивает необходимое время в восемь раз Обычное умножение матриц
O (c n ) Экспоненциальный рост - увеличение размера задачи на 1 приводит к c -кратному увеличению необходимого времени; удвоение размера задачи увеличивает необходимое время в квадрат Некоторые задачи коммивояжёра , алгоритмы поиска полным перебором

Наличие исходных данных и некоторого результата

Алгоритм - это точно определённая инструкция, последовательно применяя которую к исходным данным, можно получить решение задачи. Для каждого алгоритма есть некоторое множество объектов, допустимых в качестве исходных данных. Например, в алгоритме деления вещественных чисел делимое может быть любым, а делитель не может быть равен нулю.

Алгоритм служит, как правило, для решения не одной конкретной задачи, а некоторого класса задач. Так, алгоритм сложения применим к любой паре натуральных чисел. В этом выражается его свойство массовости, то есть возможности применять многократно один и тот же алгоритм для любой задачи одного класса.

Для разработки алгоритмов и программ используется алгоритмизация - процесс систематического составления алгоритмов для решения поставленных прикладных задач. Алгоритмизация считается обязательным этапом в процессе разработки программ и решении задач на ЭВМ. Именно для прикладных алгоритмов и программ принципиально важны детерминированность, результативность и массовость, а также правильность результатов решения поставленных задач.

Алгоритм - это понятное и точное предписание, исполнительно совершить последовательность действий, направленных на достижение цели.

Представление алгоритмов

Формы записи алгоритма:

  • словесная или вербальная (языковая, формульно-словесная);
  • псевдокод (формальные алгоритмические языки);
  • схематическая:
    • структурограммы (схемы Насси-Шнайдермана);
    • графическая (блок-схемы).

Обычно сначала (на уровне идеи) алгоритм описывается словами, но по мере приближения к реализации он обретает всё более формальные очертания и формулировку на языке, понятном исполнителю (например, машинный код).

Эффективность алгоритмов

Хотя в определении алгоритма требуется лишь конечность числа шагов, требуемых для достижения результата, на практике выполнение даже хотя бы миллиарда шагов является слишком медленным. Также обычно есть другие ограничения (на размер программы, на допустимые действия). В связи с этим вводят такие понятия как сложность алгоритма (временна́я , по размеру программы, вычислительная и др.).

Для каждой задачи может существовать множество алгоритмов, приводящих к цели. Увеличение эффективности алгоритмов составляет одну из задач современной информатики . В 50-х гг. XX века появилась даже отдельная её область - быстрые алгоритмы . В частности, в известной всем с детства задаче об умножении десятичных чисел обнаружился ряд алгоритмов, позволяющих существенно (в асимптотическом смысле) ускорить нахождение произведения. См. быстрое умножение

Алгоритм Евклида - эффективный метод вычисления наибольшего общего делителя (НОД). Назван в честь греческого математика Евклида; один из древнейших алгоритмов, который используют до сих пор .

Описан в «Началах» Евклида (примерно 300 до н. э.), а именно в книгах VII и X. В седьмой книге описан алгоритм для целых чисел, а в десятой - для длин отрезков.

Существует несколько вариантов алгоритма, ниже записанный в псевдокоде рекурсивный вариант:

функция нод(a, b) если b = 0 возврат a иначе возврат нод(b, a mod b)

НОД чисел 1599 и 650:

Шаг 1 1599 = 650*2 + 299
Шаг 2 650 = 299*2 + 52
Шаг 3 299 = 52*5 + 39
Шаг 4 52 = 39*1 + 13
Шаг 5 39 = 13*3 + 0


См. также

Примечания

  1. Kleene 1943 in Davis 1965:274
  2. Rosser 1939 in Davis 1965:225
  3. (Игошин, с. 317)
  4. Basics: The Turing Machine (with an interpreter! . Good Math, Bad Math (9 февраля 2007). Архивировано из первоисточника 2 февраля 2012.
  5. (Игошин, раздел 33)
  6. Энциклопедия кибернетики , т. 2 , c. 90-91.
  7. (Игошин, раздел 34)
  8. «Probabilistic algorithms should not be mistaken with methods (which I refuse to call algorithms), which produce a result which has a high probability of being correct. It is essential that an algorithm produces correct results (discounting human or computer errors), even if this happens after a very long time.» Henri Cohen A Course in Computational Algebraic Number Theory. - Springer-Verlag, 1996. - P. 2. - ISBN 3-540-55640-0
  9. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rives"t, Clifford Stein . - ISBN 0-262-03293-7
  10. (Раздел 12, с. 12-22 в Atallah, 2010)
  11. (Игошин, раздел 36)
  12. Peter Linz An Introduction to Formal Languages and Automata. - Jones and Bartlett Publishers, 2000. - ISBN 0-7637-1422-4
  13. "computability and complexity", Encyclopedia of computer Science and Technology , Facts On File, 2009,

В жизни нам часто приходится встречаться с различными ситуациями, в которых мы совершаем одни и те же определенные действия. Для того, чтобы вовремя проснуться, нам нужно не забыть включить будильник. Для того, чтобы утолить свой голод, нам необходимо выполнить одни и те же действия по приготовлению вкусной пищи. Для того, чтобы выполнить знакомую нам работу, мы тоже часто делаем одно и то же.

Такое поведение можно называть по-разному, смотря в каком контексте оно рассматривается. Если рассмотреть с позиции эффективности деятельности, то эти действия можно назвать привычками или навыками. Если рассматривать с точки зрения отображения процесса, то описание последовательности действий, строгое исполнение которых приводит к решению поставленных задач за определенное количество шагов, называют алгоритмом действий.

Как создаются алгоритмы действий?

Мы постоянно сталкиваемся с этим в обычной жизни. Какие действия мы совершаем, чтобы пополнить счет своего мобильного телефона? Каждый из нас — разные. Так как способов пополнения счета несколько, следовательно мы все по-разному это делаем. Результат, правда всегда один получается — появление средств на телефоне.

Или еще пример: чтобы скопировать картинку или текст, нажимаем правой кнопкой мыши на картинку, затем выбираем «Копировать», помещаем в нужное место, нажимаем правой кнопкой » Вставить», и результат достигнут.

Все это — определенная последовательность действий, в результате которых различными средствами решается поставленная задача. Но пока это только наши знания, которые перерастают в навыки и умения, а если этот процесс описать, то мы сможем наглядно увидеть алгоритм наших действий, и передать его другим людям. На словах не все и не всегда понятно бывает.

Опишите последовательность действий — это запоминается

Создать алгоритм действий можно, описав или изобразив его последовательность. Знают ли все, что надо сделать, чтобы посадить дерево? Возможно, основные шаги понятны всем, но вот когда деревце поливать, перед посадкой или после, помнит не каждый. Созданный алгоритм позволит все действия выполнить в правильной последовательности.

Чтобы описать последовательность действий посложнее, придется постараться и подробно их все записать. Пример можно взять с всевозможных правил и инструкций — там очень четко прописываются по шагам действия, которые нам надо сделать. Но бывают ситуации, в которых за определенным действие следует не один шаг, а несколько, в зависимости от предыдущего результата. В таком случае, предположительные действия тоже записывают, чтобы человек мог легко сориентироваться в разных ситуациях, и знал, что нужно предпринять.

Алгоритм действий в графике — это блок-схема

Если изобразить алгоритмы действий в графическом варианте, с помощью геометрических фигур с линиями-связями, показывающими порядок выполнения действия, то мы получим блок-схему. Блок-схема намного превосходит правила, инструкции, и записанные по порядку алгоритмы действий, по своей наглядности и читаемости.

Представьте, что вам нужно чему-то научить другого человека. Вы отлично знаете все действия в определенной последовательности. Ваша задача — показать, как это нужно делать и передать свои знания так, чтобы другой человек их запомнил и знал так же, как и вы. Устная передача знаний допускает импровизации и некоторый произвол. Самым лучшим способом будет блок-схема, в которой объясняется последовательность и возможные варианты действий. В качестве примера — веселое руководство по изучению блог-схем:

Лучшим условием для получения результата будет повторяемость действий. Это однозначно влияет на скорость достижения результата в будущем. Чем чаще вам придется повторять одни и те же действия, тем быстрее вы научитесь выполнять последовательность действий, а значит в каждый последующий раз, вам потребуется меньше времени на выполнение.

Блок-схемы применяются в продажах

В продажах такое обучение с помощью разработки алгоритмов и изображения их в виде блок-схем имеет большое распространение. Чаще всего их используют в телефонных сценариях разговоров в call-центрах и для «холодных» звонков. Корпоративная культура набирает обороты, поэтому многие компании уже не позволяют сотрудникам нести «отсебятину», даже талантливую, а предлагают действовать им по заранее разработанному сценарию, представляя «лицо фирмы» на различных этапах. Эффект появляется буквально после нескольких дней действий «по бумажке». Со временем, многое из описанных алгоритмов запоминается сотрудником, и в дальнейшем он свободно может общаться, не опасаясь того, в какую сторону может уйти разговор.

Алгоритмы действий и блог-схемы разрабатываются не только в продажах. Большое распространение они имеют в обучении и практике врачей, программистов, «компьютерщиков», у многих технических специальностей.

Стоит попробовать научиться действовать по подобным блок-схемам. Ведь впервые встречаясь с непонятным поначалу обилием действий и задач, думаешь о том, как тебе не хватает разработанной блок-схемы. После долгих мучений не выдерживаешь, и начинаешь разрабатывать и создавать самостоятельно. Эффективные люди не любят простоев в делах. А блок-схемы значительно упрощают жизнь и позволяют разобраться в решении сложных задач.

Сервисы для разработки блок-схем

В интернете есть сервисы, которые могут помочь вам создавать такие блок-схемы. Один из них — Сacoo . С его помощью вам легко удастся превращать ваши алгоритмы в различные диаграммы, блок-схемы и графики. Вы увидите, что это очень приятное и радостное занятие — преобразовывать то, что вам известно, в науку для других людей.

— хорошее настроение вам обеспечено. На первоначальном этапе можно воспользоваться возможностями бесплатной учетной записи, а в будущем за доступ нужно будет платить. Естественно, что бесплатный доступ имеет ограничения по сравнению с платными. Но для изучения и первых шагов, функционала вполне достаточно.

Разработав алгоритмы действий и преобразовав их в блок-схемы с помощью Cacoo, вы сможете надолго создать хорошее настроение не только себе, но и другим людям, постигающим азы.

Создавайте игровые блок-схемы для своих детей

Подводя итог вышесказанному отмечу, что теперь вы сможете использовать алгоритмы действий и блок-схемы в различных жизненных ситуациях. Даже ваши дети с огромным удовольствием станут выполнять не самые интересные обязанности, следуя понятным подсказкам. Если будут идеи, где и как можно применять алгоритм действий , поделитесь в комментариях, уважаемые читатели. Очень хотелось бы узнать про ваши алгоритмы.

Моя блок-схема

Вот какая блок-схема у меня получилась в первый раз. Для того, чтобы увеличить изображение, нажмите на него. После перехода на Cacoo, под записью «просмотр фигуры», нажимайте на картинку. Она откроется в большом окне. Удачи!

Алгори́тм - это точный набор инструкций, описывающих порядок действий некоторого исполнителя для достижения результата, решения некоторой задачи за конечное время.

Общие определения

Единого «истинного» определения понятия «алгоритм» нет. Наиболее известные варианты определения опираются на интуитивное понятие «задачи»:

  • Алгоритм - это конечный набор правил, который определяет последовательность операций для решения конкретного множества задач и обладает пятью важными чертами: конечность, определённость, ввод, вывод, эффективность (Д. Э. Кнут ).
  • Алгоритм - это всякая система вычислений, выполняемых по строго определённым правилам, которая после какого-либо числа шагов заведомо приводит к решению поставленной задачи (А. Н. Колмогоров ).
  • Алгоритм - это последовательность действий, либо приводящяя к решению задачи, либо поясняющая, почему это решение получить нельзя.

Формальные признаки алгоритмов

  • Детерминированность : в каждый момент времени следующий шаг работы однозначно определяется состоянием исполнителя. Алгоритм выдаёт один и тот же результат (ответ) для одних и тех же исходных данных.
  • Понятность : алгоритм должен включать только команды из заранее оговоренной системы команд исполнителя.
  • Завершаемость (конечность): при корректно заданных исходных данных алгоритм должен завершать работу и выдавать результат за конечное число шагов.
  • Массовость : алгоритм должен быть применим к разным наборам исходных данных.

Алгоритмы анализа данных

В анализе данных под алгоритмом понимается функция, преобразующая входные данные в выходные данные , эффективно вычислимая на компьютере за конечное время, точнее, за приемлемо малое для данной задачи время.

В машинном обучении понятие алгоритм может употреблять в трёх смыслах.

Литература

  1. Рудаков, К. В. Алгебраическая теория универсальных и локальных ограничений для алгоритмов распознавания : Дис. док. физ.-мат. наук: 05-13-17. - Вычислительный центр АН СССР, 1992. - 274 с. (

Понятие алгоритма, являющееся фундаментальным понятием математики и информатики, возникло задолго до появления вычислительных машин. Первоначально под словом алгоритм понимали способ выполнения арифметических действий над десятичными числами. В дальнейшем это понятие стали использовать для обозначения любой последовательности действий, приводящей к решению поставленной задачи. Само же слово алгоритм появилось в Средние века, когда европейцы познакомились со способами выполнения арифметических действий, описанными узбекским математиком Мухаммедом бен Муса аль-Хорезми. Слово алгоритм - европеизированное произношение слов аль-Хорезми .

В своем нынешнем смысле слово алгоритм часто ассоциировалось с алгоритмом Евклида, который представляет собой процесс нахождения наибольшего общего делителя (НОД) двух чисел.

Приведем современное описание алгоритма Евклида с использованием блок-схемы (см. “Способы записи алгоритмов ”):

Стрелка “”, используемая при описании данного алгоритма, обозначает операцию замещения или присваивания (см. “Операторы языка программирования ”). Разумеется, в книге Евклида “Начала” этот алгоритм сформулирован не совсем так (а записан совсем не так). В данном случае мы продемонстрировали современную формулировку этого алгоритма и одну из распространенных наглядных форм записи алгоритмов.

Любой алгоритм существует не сам по себе, а предназначен для определенного исполнителя (см. “Исполнители алгоритмов ”). Алгоритм описывается в командах исполнителя , который этот алгоритм будет выполнять. Объекты, над которыми исполнитель может совершать действия, образуют так называемую среду исполнителя , а множество команд, которые исполнитель может выполнять, - систему команд исполнителя (СКИ).

Таким образом, алгоритм можно рассматривать как последовательность команд управления работой исполнителя (предписание исполнителю на выполнение последовательности действий).

Свойства алгоритма

Значение слова алгоритм очень схоже со значением слов рецепт , инструкция . Однако любой алгоритм в отличие от рецепта или способа обязательно обладает следующими свойствами.

1. Выполнение алгоритма разбивается на последовательность законченных действий-шагов. Только выполнив одно действие (команду), можно приступать к исполнению следующего. Это свойство алгоритма называется дискретностью . Произвести каждое отдельное действие исполнителю предписывает специальное указание в записи алгоритма (команда).

2. Понятность - алгоритм не должен содержать предписаний, смысл которых может восприниматься исполнителем неоднозначно, т.е. запись алгоритма должна быть настолько четкой и полной, чтобы у исполнителя не возникало потребности в принятии каких-либо самостоятельных решений. Алгоритм всегда рассчитан на выполнение “не размышляющего” исполнителя . Алгоритм составляется из команд, входящих в СКИ.

Рассмотрим известный пример “бытового” алгоритма - алгоритм перехода улицы: “Посмотри налево. Если машин нет, дойди до середины улицы. Если есть, подожди, пока они проедут, и т.д.”. Представьте себе ситуацию: машина слева есть, но она не едет - у нее меняют колесо. Если вы думаете, что исполнитель алгоритма должен ждать, то вы поняли этот алгоритм. Если же вы решили, что улицу переходить можно, считая алгоритм подправленным ввиду непредвиденных (по вашему мнению!) обстоятельств, то вы не усвоили понятие алгоритма.

3. Детерминированность (определенность и однозначность ). Каждая команда алгоритма определяет однозначное действие исполнителя, и должно быть однозначно определено, какая команда выполняется следующей. То есть если алгоритм многократно применяется к одному и тому же набору исходных данных, то на выходе он получает каждый раз один и тот же результат.

4. Результативность - исполнение алгоритма должно закончиться за конечное число шагов, и при этом должен быть получен результат решения задачи. В качестве одного из возможных результатов может быть и установление того факта, что задача решений не имеет.

Свойство результативности содержит в себе свойство конечности - завершение работы алгоритма за конечное число шагов.

5. Массовость - алгоритм пригоден для решения любой задачи из некоторого класса задач, т.е. алгоритм правильно работает на некотором множестве исходных данных, которое называется областью применимости алгоритма.

Свойство массовости определяет скорее качество алгоритма, а не относится к обязательным свойствам (как дискретность, понятность и пр.). Существуют алгоритмы, область применимости которых ограничивается единственным набором входных данных или даже отсутствием таковых (например, получение фиксированного числа верных цифр числа p ). Правильнее говорить о том, что алгоритм должен быть применим к любым данным из своей области определения, и слово массовость не всегда подходит для описания такого свойства.

Понятие алгоритма

Обобщив вышесказанное, сформулируем следующее понятие алгоритма.

Алгоритм - понятное и точное предписание исполнителю на выполнение конечной последовательности действий, приводящей от исходных данных к искомому результату.

Приведенное определение не является определением в математическом смысле слова, т.е. это не формальное определение (формальное определение алгоритма см. в статье “Теория алгоритмов ”).

Отметим, что для каждого исполнителя набор допустимых действий (СКИ) всегда ограничен - не может существовать исполнителя, для которого любое действие является допустимым. Перефразированное рассуждение И.Канта обосновывает сформулированное утверждение следующим образом: “Если бы такой исполнитель существовал, то среди его допустимых действий было бы создание такого камня, который он не может поднять. Но это противоречит допустимости действия «Поднять любой камень»”.

Интересно, что существуют задачи, которые человек, вообще говоря, умеет решать, не зная при этом алгоритм ее решения. Например, перед человеком лежат фотографии кошек и собак. Задача состоит в том, чтобы определить, кошка или собака изображена на конкретной фотографии. Человек решает эту задачу, но написать алгоритм решения этой задачи пока чрезвычайно сложно.

С другой стороны, существуют задачи, для которых вообще невозможно построить процедуру решения. Причем данный факт можно строго доказать. Об этом вы можете прочитать в статье “”.

Данная тема традиционно изучается в базовом курсе информатики основной школы. Содержание статьи “Алгоритм” может рассматриваться в качестве базового минимума информации по этой теме для учеников 8–9-х классов. В пропедевтическом курсе информатики (5–7-е классы) более актуальным является составление конкретных алгоритмов с использованием различных форм их записи, в том числе и для учебных исполнителей (см. “Исполнители алгоритмов ”).

Каждый из нас ежедневно решает задачи различной сложности: как быстрее добраться в школу или на работу в условиях нехватки времени; в каком порядке выполнять дела, намеченные на текущий день, и т.д. Некоторые задачи настолько сложны, что требуют длительных размышлений для нахождения решения (иногда решение так и не удается найти), другие задачи мы решаем автоматически, так как выполняем их ежедневно на протяжении многих лет (почистить утром зубы; позвонить другу по телефону). В большинстве случаев решение каждой задачи можно подразделить на простые этапы.

Пример. Задача “Звонок другу по телефону” подразделяется на следующие этапы (шаги):

1. Поднять телефонную трубку.

2. Если услышал гудок, то набрать номер друга, иначе конец решения задачи с отрицательным результатом (телефон неисправен).

3. Определить тип гудков: “вызов” или “занято”. Если “вызов”, перейти к шагу 4, если “занято”, перейти к шагу 6.

4. Дождаться 6 вызывающих гудков (конкретное число гудков в алгоритме для разных людей может быть различным).

5. Если за это время абонент не поднял трубку, то конец решения задачи с отрицательным результатом (абонент не отвечает). Иначе начать разговор (задача решена успешно).

6. Положить телефонную трубку; конец решения задачи с отрицательным результатом (абонент занят).

Последовательность шагов, приведенная в примере 1, является алгоритмом решения задачи “Звонок другу по телефону”. Исполнитель этого алгоритма - человек. Объекты алгоритма - телефон и телефонные сигналы.

При разборе алгоритма “Звонок другу по телефону” следует обратить внимание на п. 4 (“дождаться 6 вызывающих гудков”): без указания конкретного числа гудков нарушается сразу несколько свойств алгоритма (дискретность, определенность и результативность). Естественно, вместо числа 6 в алгоритме может стоять любое другое разумное число.

Для решения любой задачи надо знать, что дано и что следует получить, т.е. у задачи есть исходные данные (некие объекты) и искомые результаты. Для получения результатов необходимо знать способ решения задачи, то есть располагать алгоритмом , в котором указано, какие действия и в каком порядке следует выполнить, чтобы решить задачу (получить искомые результаты). Далее следует разобрать свойства алгоритма на примере решения какой-либо бытовой проблемы. Составление алгоритмов для решения бытовых проблем только на первый взгляд кажется простым, мы очень многие действия делаем автоматически, и их формализация требует от учащихся учета многих деталей и факторов.

При изложении теоретического материала необходимо обратить внимание на то, почему приведенное определение алгоритма не является строгим математическим определением , а является только описанием понятия алгоритм , раскрывающим его сущность. Оно не является формальным потому, что в нем используются такие не уточняемые понятия, как “система правил”, “исходные данные”, и т.д.

В рамках изучения этой темы желательно также обсудить вопрос, является ли способ переправки Волка, Козы и Капусты через реку алгоритмом (эта задача рассматривается во многих учебниках информатики как пример задачи на построение алгоритмов)? Иногда ученики сначала склоняются к мнению, что решение упомянутой задачи алгоритмом не является, т.к. не обладает свойством массовости. Но способ решения частной задачи - это тоже алгоритм (см. замечания о массовости в тексте статьи).

Стоит отметить, что областью применимости данного конкретного алгоритма являются все наборы объектов, которые характеризуются теми же взаимоотношениями, что и Волк, Коза и Капуста. Например, Удав, Кролик и Морковка.

Иногда вызывает споры и свойство конечности алгоритма. В качестве контрпримеров приводятся алгоритмы работы операционной системы и атомной электростанции. Не углубляясь в спор, заметим, что здесь делается попытка представить алгоритм, в котором в качестве исходного объекта рассматривается компьютер, обладающий непрерывными свойствами (бесконечная бесперебойная работа вне зависимости от действий пользователя и проблем с “железом”). Алгоритмы же работают по определению только с дискретными объектами (см. статью “Теория алгоритмов ”). Кроме того, свойство конечности существенно при доказательстве ряда фундаментальных утверждений в теории алгоритмов (см., например, “Алгоритмически неразрешимые проблемы ”), поэтому опускать его даже в рамках базового курса информатики не следует.

Важным при изучении данной темы является и понятие исполнителя . Причем оказывается, что гораздо проще построить алгоритм для программно-управляемого автомата (в том числе компьютера), чем для человека. Подробнее об этом рассказано в статье “Исполнители алгоритмов ”. Для управления автоматом или компьютером можно придумать формальный язык описания алгоритмов. Такие языки называются “Языки программирования ”, а сам алгоритм, записанный на таком языке, - программой.

При изучении данной темы полезным оказывается построение алгоритмов, известных ученикам из курса математики, но записываемых в математике менее формально. Например, алгоритм решения квадратного уравнения (в информатике более полезно решать обобщенно-квадратное уравнение, в котором коэффициент при x 2 может быть равен 0), алгоритм решения задач на построение (здесь особое внимание следует уделять детерминированности алгоритма) и т.п.

В курсе информатики средней школы к понятию алгоритма можно вернуться в контексте изучения темы “Моделирование ”. Ведь алгоритм можно рассматривать как информационную модель деятельности исполнителя.

В профильном курсе информатики углубление данной темы происходит в результате знакомства с основами “Теории алгоритмов ”, в рамках которой в первую очередь дается уже формальное определение алгоритма.

Сегодня мы дадим ответ на вопрос о том, что такое алгоритм.

Зачастую алгоритмом принято называть набор инструкций, которые описывают необходимые действия (а также порядок их выполнения) с целью решения поставленной задачи. В наше время алгоритмы используются не только в инженерном деле и в науке, но и в других сферах жизни.

Что называется алгоритмом

Понятие алгоритма является довольно древним и относится к одному из главных, а также базовых понятий в математике. Термин происходит от латинского написания имени известного восточного математика 787-850 годов Мухаммеда аль-Хорезми - Algorithmi. Этот ученный был первым, кто сформулировал точные правила для записи натуральных чисел, а также правила для подведения отсчётов в столбик. Довольно интересным фактом является и то, что, несмотря на древние корни, само понятие было точно сформулировано лишь в начале ХХ века. Ныне алгоритм является основной составляющей современного бизнеса, любого учебного процесса или же исследования. Именно поэтому каждому современному человеку просто необходимо точно знать, что означает алгоритм.

Алгоритм – зачастую точные сформулированные указания, порядок определенных действий, которые должны обеспечить достижение поставленной цели.

Что такое свойства алгоритмов

Но стоит помнить, что не каждую последовательность действий можно назвать алгоритмом. Последовательность является алгоритмом, только если она обладает определенными свойствами. Перечислим их:

  1. Одним из важнейших свойств является дискретность. Ее мы рассмотрим чуточку ниже.
  2. Не менее важной является определенность. Согласно данному свойству каждая команда должна быть однозначной и наводить исполнителя на конкретное действие.
  3. Стоит помнить и о понятности алгоритма. В алгоритме должны использоваться только необходимые команды, которые относятся к поставленной задаче.
  4. Важным свойством является и результативность (также часто называют конечностью) алгоритма. Свойство «результативность» указывает на то, что в алгоритме имеется определенное, ранее указанное число шагов, выполнение которых приведет к выполнению поставленной задачи.
  5. Также любой алгоритм должен обязательно обладать и таким свойством, как массовость. Если алгоритм обеспечивает выполнение всех задач определенного типа, то он обладает свойством массовости.

Что такое алгоритм в информатике

Все ученные сходится в утверждении о том, что понятие алгоритма является фундаментальным в современной информатике. При создании программного обеспечения первым пунктом всегда стоит создание алгоритма.

Алгоритм, записанный на формальном языке, принято называть программой. Очень часто понятие алгоритма тесно связывается с процессом его записи в программу. Именно поэтому термин алгоритма и программы зачастую считают синонимами

Как создать алгоритм

Для того, чтобы создать эффективный и качественный алгоритм, следует соблюдать несколько правил:

  1. Алгоритм обязательно должен писаться на формальном и ясном языке. Неоднозначность или же неясность указаний недопустима.
  2. При составлении алгоритма нужно обязательно учесть и то, для кого он составляется. Исполнитель должен понимать все пункты алгоритма и иметь возможность претворить их в жизнь.
  3. Желательно делать алгоритм кратким, точным и ясным.

Что такое линейный алгоритм

Среди всех алгоритмов различают линейные и нелинейные. Алгоритм считается линейным, если в нем соблюдается постоянный порядок действий на протяжении всего процесса выполнения.

В информатике язык программирования, с помощью которого описывается алгоритм, принято называть оператором. Выделяют простые и структурные операторы. Простые операторы описывают только одно действие.

Именно простые операторы наиболее часто используются в линейных алгоритмах.

Свойство дискретности алгоритма и ее значение

Ранее мы упоминали, что любой алгоритм обладает таким свойством, как дискретность. Теперь давайте рассмотрим понятие дискретности более подробно.

Часто дискретность заменяют таким термином, как прерывность и раздельность алгоритма. По сути все три термина обозначают одно и то же, а именно – последовательное (поочередное) выполнение всех команд алгоритма. При соблюдении дискретности каждое действие выполняется только после завершения предыдущего, а выполнение всех поставленных пунктов приводит к ранее указанному конечному результату (к полному решению задачи).

Теперь мы рассмотрели основные термины и понятия, которые относятся к нашей сегодняшней теме. Наверняка для вас теперь не проблема ответить на вопрос о том, что является алгоритмом. Полученные знания еще не раз пригодятся как в вашей профессиональной сфере, так и в повседневной жизни. Уточнить детали или же найти ответ на возникший вопрос вы как всегда можете с помощью удобной системы комментариев ниже.