Меню
Бесплатно
Главная  /  Профилактика  /  Кариотипирование супругов и плода: предупреждён значит вооружён. InternetСкорая помощьМедицинский портал

Кариотипирование супругов и плода: предупреждён значит вооружён. InternetСкорая помощьМедицинский портал

Кариотипирование является методом цитогенетического исследования и заключается в изучении хромосом человека.

В процессе исследования хромосомного набора (кариотип) определяются изменения в количественном составе и выявляются нарушения структур (качество) хромосом.

Кариотипирование проводится один раз в жизни и позволяет определить геном мужчины и женщины, состоящих в браке, выявить несоответствие хромосом супругов, что может явиться причиной рождения ребенка с пороком развития или тяжелым генетическим заболеванием, а также позволяет установить причину, по которой невозможно иметь детей у данной семейной пары.

Кариотип – это набор хромосом человека с полным описанием всех их признаков (размер, количество, форма и прочее). Геном каждого человека в норме состоит из 46 хромосом (23 пары). 44 хромосомы являются аутосомными и отвечают за передачу наследственных признаков в роду (цвет волос, строение ушей, острота зрения и так далее). Последняя, 23-я пара представлена половыми хромосомами, которые и определяют кариотип женщины 46ХХ и мужчины 46ХУ.

Показания для кариотипирования

В идеале, кариотипирование необходимо пройти всем супругам, желающим стать родителями, даже если показания для проведения анализа отсутствуют.

Многие наследственные заболевания, которыми страдали прадедушки и прабабушки могут не проявляться у человека, а кариотипирование поможет выявить патологическую хромосому и рассчитать риск рождения ребенка с патологией.

К обязательным показаниям для проведения процедуры относятся:

  • возраст будущих родителей (35 лет и старше, даже если этому пункту отвечает только один из супругов);
  • бесплодие неустановленного происхождения;
  • многократные и безуспешные попытки искусственного оплодотворения (ЭКО);
  • наличие наследственного заболевания у одного из супругов;
  • расстройства гормонального баланса у женщины;
  • нарушение образования сперматозоидов (сперматогенеза) с неустановленной причиной;
  • неблагоприятное экологическое окружение;
  • контакт с химическими веществами и облучающее воздействие;
  • воздействие вредных факторов на женщину, особенно в недавнем прошлом: курение, алкоголь, наркотики, прием лекарственных препаратов;
  • наличие самопроизвольного прерывания беременности (выкидыши , преждевременные роды, замершие беременности);
  • близкородственные браки;
  • наличие ребенка/детей с хромосомными патологиями или врожденными пороками развития.

Процедуру исследования кариотипов супругов необходимо провести еще на этапе планирования беременности. Но не исключается возможность кариотипирования в том случае, если женщина беременна. Тогда проводится кариотипирование не только супругов, но и будущего ребенка (пренатальное кариотипирование).

Подготовка к анализу

Так как для анализа на определение кариотипа используются кровяные клетки, необходимо исключить влияние различных факторов, которые осложняют их рост, что делает анализ неинформативным.

Примерно за 2 недели до сдачи крови на анализ кариотипирования следует предотвратить или отказаться от воздействия следующих факторов:

  • наличие острых заболеваний или обострение хронических;
  • прием лекарственных препаратов, особенно антибиотиков;
  • употребление алкоголя и курение.

Механизм проведения

Предпочтение отдается венозной крови, которую забирают у обоих супругов. Из венозной крови отсеиваются лимфоциты, которые находятся в фазе митоза (деления). В течение трех суток анализируется рост и размножение клеток, для чего лимфоциты обрабатывают митогеном, который стимулирует митоз. В процессе деления исследователь может наблюдать хромосомы, но процесс митоза останавливают путем специальной обработки. Затем готовятся специальные препараты хромосом на стекле.

Чтобы лучше выявить структуру хромосом, их окрашивают. Каждая хромосома имеет свою индивидуальную исчерченность, что становится хорошо заметным после окрашивания. Затем проводится анализ окрашенных мазков, во время которого определяется общее количество хромосом и структура каждой. При этом сопоставляется исчерченность парных хромосом, а полученный результат с нормами цитогенетических схем хромосом.

Для анализа обычно требуется не более 12-15 лимфоцитов, данное количество клеток позволяет выявить количественное и качественное несоответствие хромосом, а, следовательно, наследственное заболевание.

Что выявляет кариотипирование

Интерпретацию анализа на кариотипирование проводит врач-генетик. Анализ в норме выглядит как 46ХХ или 46ХУ. Но если выявлена какая-либо генетическая патология, например выявление третьей лишней 21 хромосомы у женщины, то результат будет выглядеть как 46ХХ21+.

Что позволяет определить анализ хромосомного набора:

  • трисомия – третья лишняя хромосома в паре (например, синдром Дауна);
  • моносомия – в паре отсутствует одна хромосома;
  • делеция – утрата участка хромосомы;
  • дупликация – удвоение какого-либо фрагмента хромосомы;
  • инверсия – разворот участка хромосомы;
  • транслокация – перемещение участков (рокировка) хромосомы.

Например, обнаружение делеции в У-хромосоме часто является причиной нарушенного сперматогенеза и, следовательно, мужского бесплодия. Также известно, что делеции являются причиной некоторых врожденных патологий у плода.

Для удобства отображения на бумаге результата анализа при обнаружении изменения структуры хромосомы, длинное плечо записывается латинской буквой q, а короткое t. Например, при потере фрагмента короткого плеча 5-ой хромосомы у женщины, результат анализа будет выглядеть так: 46ХХ5t, что означает синдром «кошачьего крика» (генетическое отклонение, характеризующееся характерным плачем ребенка и другими врожденными нарушениями).

Кроме того, кариотипирование позволяет оценить состояние генов. Путем данного метода исследования можно выявить:

  • генные мутации, которые влияют на тромбообразование, что нарушает кровоток мелких сосудах при формировании плаценты или имплантации и может стать причиной выкидыша/бесплодия;
  • генная мутация У-хромосомы (в данном случае необходимо использовать сперму донора);
  • мутации генов, отвечающих за детоксикацию (низкая способность организма к обеззараживанию окружающих токсических факторов);
  • генная мутация в гене муковисцидоза помогает исключить возможность данного заболевания у ребенка.

Кроме того, кариотипирование помогает диагностировать генетическую предрасположенность ко многим заболеваниям, например, к инфаркту миокарда , сахарному диабету , гипертонической болезни, патологии суставов и пр.

Что делать при отклонениях

В случае обнаружения генных мутаций или хромосомных аберраций у одного из супругов на этапе планирования беременности, врач-генетик объясняет паре вероятность рождения больного ребенка и возможные риски.

Как известно, хромосомная и генная патология неизлечима, поэтому дальнейшее решение ложится на плечи будущих родителей (воспользоваться донорской спермой или яйцеклеткой, рискнуть родить ребенка или остаться без детей).

При обнаружении хромосомных аномалий во время беременности, особенно у эмбриона, женщине предлагают ее прервать. Настаивать на прерывании беременности врачи не имеют права.

При некоторых хромосомных аномалиях (например, риск рождения ребенка с патологией не высокий) генетик может назначить курс определенных витаминов, которые снижают вероятность рождения больного ребенка.

46,ХХ инверсия пола характеризуется наличием мужского фенотипа (с полной или неполной маскулинизацией), наличием тестикулярной ткани при отсутствии в кариотипе Y-хромосомы. При этом данное нарушение формирования пола может быть обусловлено либо наличием синдрома «46,ХХ-мужчина» либо овотестикулярной формой нарушения формирования пола (истинный гермафродитизм). 46,ХХ инверсия пола может быть связана с наличием фрагмента Y-хромосомы и/или скрытого мозаицизма по Y-хромосоме (Y-позитивная форма) либо с аутосомными или Х-сцепленными мутациями (Y-негативная форма).

46,ХХ инверсия пола тип 1 (OMIM 400045)

В большинстве случаев ХХ-инверсия пола является результатом транслокации небольшого фрагмента короткого плеча Y-хромосомы, несущего ген SRY (OMIM 480000; Yp11.3), на Х-хромосому или аутосому. Нарушение формирования пола является врожденным состоянием, при котором наблюдается полное или частичное аномальное развитие и строение половых желез, внешних половых признаков, обусловленное аномалиями строения половых хромосом. У пациентов с истинным гермафродитизмом гистологически могут быть обнаружены как зрелые ткани яичников с фолликулами, так и яичек с семенными канальцами.

Ключевую роль в детерминации мужского пола и в дифференцировке яичек связана с геном SRY (Sex-determining region Y chromosome). Делеции или точковые мутации этого гена приводят к развитию «чистой» формы дисгенезии гонад при кариотипе 46,XY (синдром Свайера), тогда как его присутствие в геноме больных с 46,ХХ инверсией пола (синдром де ля Шапеля или синдром «46,ХХ-мужчина») обуславливает развитие по мужскому типу, а у больных с мозаицизмом по хромосоме Y, в том числе при - с наличием и выраженностью маскулинизации и/или двойственного полового развития.

Ген SRY расположен на коротком плече Y-хромосомы в непосредственной близости к PAR1 региону, области гомологичной конъюгации хромосом Х и Y, происходящей в сперматогенезе. В процессе мейотического обмена между Х- и Y-хромосомами участок Y-хромосомы, содержащий ген SRY, может быть транслоцирован на Х-хромосому, что может привести к образованию сперматозоидов с перестроенными (дериватными) хромосомами: с Y-хромосомой, утратившей ген SRY, и Х-хромосомой, несущей этот ген. При оплодотворении такими гаметами яйцеклетки, соответственно, возможно рождение мужчин с кариотипом 46,ХХ с транслокацией гена SRY и женщин с кариотипом 46,XY, но с делецией гена SRY. Так, 85-90% больных с ХХ инверсией пола имеют в геноме небольшую часть короткого плеча Y-хромосомы, невидимую при стандартном цитогенетическом исследовании . Последовательности Y-хромосомы у таких больных транслоцированы, как правило, на Х-хромосому, реже на одну из аутосом, унаследованных от отца. Транслоцированный участок Y-хромосомы при этом содержит ген SRY. В редких случаях может встречаться скрытый мозаицизм по Y-несущему клону (например, 46,ХY), о чем свидетельствует наличие локусов SRY, AMGL и других Y-специфичных маркеров.

Для идентификации в геноме последовательностей Y-хромосомы, а также выявления делеции гена SRY, используется метод мультиплексной полимеразной цепной реакции (мПЦР), позволяющий исследовать наличия данного гена, а также гена амелогенина (AMG, AMELX), локализованного на коротком плече Х-хромосомы и его гомолога, локализованного на коротком плече Y-хромосомы (AMGL / AMELY). Для анализа наличия точковых мутаций гена SRY - прямое секвенирование его кодирующей последовательности.

С целью анализа количественных аномалий (анеуполидий) и некоторых структурных аномалий половых хромосом, а также гоносомного мозаицизма и химеризма, может быть использован метод количественной флюоресцентной ПЦР.

46,ХХ инверсия пола тип 2 (ОMIM 278850)

Данный тип ХХ-инверсии пола вызван дупликацией регуляторной области гена SOX9. Ген SOX9 располагается на длинном плече хромосомы 17 в локусе q24.3. Кодируемый геном белок является транскрипционным фактором, играющим важную роль в процессе эмбрионального развития. Особенно важен данный белок для развития скелета и репродуктивной системы. Дупликации локуса 17q24 приводит к увеличению числа копий гена SOX9, что у плодов с кариотипом 46,ХХ вызывает дифференцировку гонад по мужскому типу и развитие тестикул в отсутствие гена SRY и других генов Y-хромосомы (SRY-негативная ХХ-инверсия пола). При этом в большинстве случаев дупликаций гена SOX9 не происходит формирования нормальных тестикул, что ведет к овотестикулярной форме нарушения формирования пола (истинный гермафродитизм).

Точковые мутации в гене SOX9 у пациентов с кариотипом 46,ХХ и 46,ХY приводят к развитию кампомелической дисплазии (OMIM 114290) - заболеванию, которое влияет на развитие скелета и репродуктивной системы и часто является угрожающим жизни состоянием в период новорожденности. Пациенты с кариотипом 46,ХХ и точковыми мутациями в гене SOX9 имеют дисгенезию гонад без инверсии пола (фенотипически женщины), а у пациентов с кариотипом 46,XY дисгенезия гонад приводит к XY - инверсии пола или двойственному развитию половых органов.

В Центре Молекулярной Генетики проводится анализ ключевых генов, контролирующих дифференцировку пола: с помощью количественного метода MLPA проводится поиск делеций и дупликаций генов SRY и SOX9.

46,ХХ инверсия пола тип 3 (ОMIM 300833)

Данная форма ХХ-инверсии пола вызвана дупликацией гена SOX3 или делецией его негативно-регуляторной области. Ген SOX3 (sex determining region Y-box 3) является Х-сцепленным гомологом гена SRY, располагается на длинном плече Х-хромосомы в локусе Xq27.1 и подвержен Х-инактивации. Кодируемый им белок является членом семейства SOX (SRY-related HMG-box) - транскрипционных факторов, вовлеченных в контроль дифференцировки различных типов клеток, а также в регуляцию формирования головного мозга в ходе эмбрионального развития, развитие гипоталамо-гипофизарной системы. Он поддерживает недифференцированное состояние у нервных клеток, противодействуя влиянию факторов, стимулирующих их специализацию. Также наличие данного белка необходимо для инициирования формирования пола по мужскому типу. В дифференцирующихся тестикулах белок SOX3 поддерживает дифференцировку и развитие предшественников ‘поддерживающих клеток’ бипотенциальных (индифферентных) гонад в клетки Сертоли, а не в клетки гранулезы овариальной ткани.

Мутации, делеции или дупликации гена SOX3 являются причиной X-сцепленного гипопитуитаризма, некоторых форм аномалии развития нервной трубки (септо-оптической дисплазии), а также X-сцепленной умственной отсталости с изолированным дефицитом гормона роста. Дупликации Xq26-q27, включающие ген SOX3, являются одной из причин SRY-негативной ХХ-инверсии пола (46,ХХ тестикулярной и овотестикулярной форм нарушения формирования пола). Описано несколько случаев ХХ-инверсии пола, вызванных микродупликациями и микроделециями в локусе Xq27.1. При этом спектр фенотипических проявлений (от бесплодия при нормальном мужском фенотипе до аномалий развития пола, микроцефалии с задержкой умственного развития) зависел от локализации и размера перестройки.

В отличие от пациентов с другими половыми хромосомными анеуплоидиями, девочек с синдромом Тернера часто идентифицируют при рождении или до половой зрелости из-за отчетливых фенотипических признаков. Синдром Тернера значительно более редкий, чем другие анеуплоидии по половым хромосомам. Встречаемость фенотипа синдрома Тернера - приблизительно 1 на 4000 новорожденных девочек, хотя в некоторых исследованиях приведены значительно более высокие цифры.

Наиболее частая хромосомная конституция при - 45,Х (иногда неправильно записываемая 45,Х0), без второй половой хромосомы. Тем не менее до 50% случаев имеет другие кариотипы. Около четверти случаев синдрома Тернера - мозаичные кариотипы, в которых только часть клеток содержит 45,Х. Наиболее частые кариотипы и их приближенные относительные частоты следующие:

1) 45,Х: 50%
2) 46,X,i(Xq): 15%
3) Мозаики 45,Х/46, XX: 15%
4) Мозаики 45,X/46,X,i (Xq): около 5%
5) 45,Х, другая аномалия X: около 5%
6) Другие мозаики 45,Х/?: около 5%

Состав хромосом клинически значим. Например, пациентки с i(Xq) подобны женщинам с классическим 45,Х, пациентки с делецией Хр имеют низкий рост и врожденные пороки развития, а с делецией Xq часто имеют только дисфункцию гонад.

Типичные аномалии при синдроме Тернера включают низкий рост, дизгенезию гонад (в результате нарушения их формирования яичники обычно представлены соединительнотканными полосками), характерное необычное лицо, складчатую шею, низкий рост волос на затылке, широкую грудную клетку с широко расположенными сосками и высокую частоту почечных и сердечно-сосудистых аномалий.
При рождении младенцы с этим синдромом часто имеют важный диагностический признак - отек тыльной стороны стоп и кистей.

У многих пациентов обнаруживают коарктацию аорты, женщины с синдромом Тернера имеют повышенный риск сердечно-сосудистых аномалий. Лимфоотек может проявляться во внутриутробном периоде, вызывая кистозную гигрому плода (обнаруживаемую при ультразвуковом исследовании - УЗИ), вызывающую видимые после родов шейные складки.

Синдром Тернера следует заподозрить у любой новорожденной девочки с отеком кистей и стоп или с гипоплазией левых отделов сердца или коарктацией аорты. Возможность этого диагноза нужно также учитывать в подростковом периоде у девушек с первичной или вторичной аменореей, особенно если они низкого роста. Терапия гормоном роста показана для всех девушек с синдромом Тернера и позволяет прибавить от 6 до 12 см роста.

Обычно считают, что интеллект у женщин с синдромом Тернера будет нормальным, хотя приблизительно 10% пациенток имеют значимую задержку развития, требующую специального образования. Даже среди тех, кто имеют нормальный интеллект, тем не менее, часто выявляют недостаточность в пространственном восприятии, двигательной и тонкой моторике.

Как следствие, невербальная оценка IQ значительно ниже вербальной, и большинство пациенток нуждается в педагогической поддержке, особенно по математике. Женщины с синдромом Тернера имеют высокий риск низкой социальной адаптации. Сравнение девушек 45,Х с материнским и отцовским происхождением Х-хромосомы показало значительно худшие социальные навыки при материнской Х-хромосоме. Поскольку эффект родительского происхождения может объясняться импринтингом, такую возможность исследуют для генов Х-хромосомы, которые влияют на фенотип.

Высокая встречаемость кариотипа 45,Х при спонтанных абортах уже упоминалась. Аномалия присутствует предположительно в 1-2% всех зачатий; выживание до срока родов - редкое явление, и более чем 99% таких беременностей спонтанно прерывается. Единственная Х-хромосома примерно в 70% случаев имеет материнское происхождение; другими словами, хромосомная ошибка, ведущая к потере половой хромосомы, обычно происходит у отца.

Основа для необыкновенно высокой частоты утраты Х- или Y-хромосомы неизвестна. Кроме того, неясно, почему кариотип 45,Х, столь часто летальный внутриутробно, очевидно полностью совместим с жизнью после родов. Утраченные гены, ответственные за фенотип синдрома Тернера, должны находиться как в Х-, так и Y-хромосоме. Предполагают, что эти гены входят в число генов, избегающих Х-инактивации, в частности, находящихся на коротком плече, включая псевдоаутосомную область.

Иногда у пациентов с низким ростом , дизгенезией гонад и умственной отсталостью выявляют небольшие кольцевые Х-хромосомы. Поскольку задержка умственного развития нетипична для синдрома Тернера, наличие такой задержки с другими аномалиями у больных с кариотипом 46,Х,r(Х) связывают с тем, что небольшие кольцевые Х-хромосомы утрачивают центр Х-инактивации.

Невозможность инактивировать кольцевую Х-хромосому приводит к избыточной экспрессии генов, в норме подлежащих инактивации. Обнаружение кольцевой Х-хромосомы при пренатальной диагностике может вести к большой неопределенности, в таком случае показано исследование экспрессии гена XIST. Большие кольца, содержащие центр Х-инактивации и экспрессирующие ген XIST, приводят к развитию фенотипа синдрома Тернера; при небольших кольцевых хромосомах без экспрессии гена XIST можно предполагать более серьезный фенотип.

кариотип плода 46,ХХ

Найдено (60 сообщений)

17 июля 2015 г. / Елена

О том, что возможен сбой деления в клетках плаценты, а не плода . Кроме того, возможна контаминация материала материнскими клетками. Если бы выявили мужской кариотип , то вопроса бы не возникало. При женском Кариотипе 46 , ХХ , такая...

16 марта 2015 г. / Елена

100. Результаты исследования плодного материала говорит о том, что выявлен женский нормальный кариотип 46 ,ХХ , т.е. нет синдрома Дауна. Кариотип не может говорить о 100% здоровье плода , т.к. возможные микроперестройки хромосом не видны в световом...

генетик 2 марта 2015 г. / Наталья / тюмень

Добрый вечер. Беременность 11 недель, сдала анализ на кариотип плода по возрастным показаниям. Результат 46(5). Подскажите пожалуйста, что это значит.

Известно, что вероятность невынашивания беременности значительно выше при хромосомных нарушениях у родителей. Поэтому данное обследование супругов применяется при привычном невынашивании беременности и бесплодии. Генетическое обследование помогает не только установить причину бесплодия, но и прогнозировать возможность рождения детей с хромосомной патологией. Поэтому большое значение придается дородовой диагностике хромосомных аберраций.

Кариотип – это полный набор хромосом клетки, в норме 46 хромосом: 22 пары аутосом и две половые хромосомы. У женщин ХХ, а у мужчин ХУ хромосомы. Каждая хромосома несет гены, ответственные за наследственность. Кариотип 46, хх - это нормальный женский кариотип, кариотип 46, xy соответствует нормальному мужскому кариопипу. Поэтому, если супружеская пара получила ответ - нормальный кариотип 46, xx и кариотип 46, xy, то нет поводов для переживаний. Кариотип не меняется в течение всей жизни.

Возможны нарушения хромосомной структуры - делеции (утрата участка хромосомы), дупликации (повторение определенного участка хромосомы), инверсии (поворот участка хромосомы на 180°) и транслокации (перемещения участков хромосомы в новое положение). Установлена связь между мужским бесплодием и делециями, возникающими на Y-хромосоме, при нормальном кариотипе 46, xy. Даже наличие микроделеций на Y-хромосоме сопровождается различными нарушениями сперматогенеза.

Если имеются структурные аномалии хромосомы, то в кариотипе указывается: p короткое плечо хромосомы, q - длинное плечо, t - транслокация. Например, при делеции короткого плеча хромосомы 5 женский кариотип будет выглядеть так: 46, хх, 5p- (синдром «кошачьего крика»). Мать ребёнка с синдромом Дауна, обусловленным транслокацией хромосомы 14/21, будет иметь кариотип 45, ХХ, t (14q; 21q). Измененная хромосома образуется при слиянии длинных плеч хромосомы 14 и 21, а короткие плечи теряются. В любом случае, по получению анализа необходимо обратиться к генетику, который подробно объяснит значение результатов, если в них имеются отклонения.

Если выявлена проблема у одного из родителей, генетик делает заключение о риске наследования ребенком того или иного заболевания или порока развития. Если беременность возможна, то все равно проводится исследование кариотипа плода, ведь не все пороки развития можно диагностировать при УЗИ, тем более, что это возможно в более поздние сроки. Определение кариотипа плода в клетках хориона дает возможность ранней диагностики наследственной патологии. В случае выявления порока развития плода, который не совместим с жизнью, проводится прерывание беременности в ранние сроки. В более поздние сроки беременности исследуются околоплодные воды и клетки кожи плода, которые получают при амнио- и кордоцентезе.

Кариотипирование плода

Кариотипирование плода проводится при подозрении на врожденную патологию. При синдроме Дауна, например, имеется дополнительная 21 хромосома, поэтому кариотип девочки будет описан как 47,ХХ 21 +, а мальчика 47, ХY 21+. Синдром Кляйнфельтера встречается у 1 из 500 новорожденных мальчиков, при этом заболевании увеличивается количество Х хромосом - кариотип 47,ХХY, а при большем увеличении количества Х-хромосом 48,ХХХY и 49,ХХХХY у ребенка будут нарушения интеллекта, поэтому ставится вопрос о прерывании беременности. Кариотип при синдроме Шерешевского – Тернера будет описан так: 45X0 – утрата одной Х хромосомы.

В обязательном порядке проводится предимплантационная генетическая диагностика при ЭКО, которая позволяет обнаружить серьезные отклонения в количестве хромосом.