Меню
Бесплатно
Главная  /  Профилактика  /  Строение белков. Белок: третичная структура. Нарушение третичной структуры белка

Строение белков. Белок: третичная структура. Нарушение третичной структуры белка

«Белка и Стрелка» - Белка и Стрелка дожили до глубокой старости и умерли своей смертью. Через некоторое время у Стрелки появились щенки. Одними из наиболее приспособившихся собак-претендентов были Белка и Стрелка. 19 августа 1960 года был совершён успешный запуск космического корабля-спутника на орбиту. Все шесть щенков были здоровы.

«Белки урок» - Качественные реакции. Общие свойства белков. Четвертичная структура белковой молекулы. Биуретовая Ксантопротеиновая HNO3 NaOH CuSO4. Содержание белков в организме (в процентах к сухой массе). Структура белковой молекулы. Белки. Функции белков. Содержание белков в пище. Что такое жизнь?

«Биосинтез белка» - Незаменимые аминокислоты выделены жирным шрифтом. Участники биосинтеза молекул белка. Неправильный ответ. Содержание. Проверь себя. Схема растительной и животной клеток. Введение. Правильный ответ. Биосинтез белков в живой клетке. Процесс биосинтеза белков в живой клетке. Поставщики энергии для биосинтеза белков.

«Белки химия» - В состав слизи и синовиальной жидкости входят мукопротеиды. Определение. Строение полипептидной цепи. Содержание. Такую реакцию дают все соединения, содержащие пептидную связь. Последовательное соединение аминокислот при образовании белковой молекулы. Первичная структура белка при денатурации сохраняется.

«Белки и их функции» - Функции белков чрезвычайно многообразны. Строительный материал. Сократительные белки вызывают всякое движение. Химические свойства белков. Выработка белковых тел и антител для обезвреживания чужеродных веществ. Функции белка. Из белков построены кровеносные сосуды, сухожилия, волосы. Вторичная структура Третичная структура Четвертичная структура.

«Аминокислоты и белки» - Реакции?-аминокислот. Биуретовая реакция (с гидроксидом меди (II) Cu(OH)2) Нингидринная реакция. РАЗЛИЧНЫЕ ВАРИАНТЫ ИЗОБРАЖЕНИЯ СТРУКТУРЫ БЕЛКА КРАМБИНА. Отходы с оптически активным изомером a-аминокислоты. ОБРАЗОВАНИЕ ВНУТРИМОЛЕКУЛЯРНЫХ ВОДОРОДНЫХ СВЯЗЕЙ (изображены пунктирными линиями) в молекуле полипептида.

Белки — высокомолекулярные органические соединения, состоящие из остатков α-аминокислот.

В состав белков входят углерод, водород, азот, кислород, сера. Часть белков образует комплексы с другими молекулами, содержащими фосфор, железо, цинк и медь.

Белки обладают большой молекулярной массой: яичный альбумин — 36 000, гемоглобин — 152 000, миозин — 500 000. Для сравнения: молекулярная масса спирта — 46, уксусной кислоты — 60, бензола — 78.

Аминокислотный состав белков

Белки — непериодические полимеры, мономерами которых являются α-аминокислоты . Обычно в качестве мономеров белков называют 20 видов α-аминокислот, хотя в клетках и тканях их обнаружено свыше 170.

В зависимости от того, могут ли аминокислоты синтезироваться в организме человека и других животных, различают: заменимые аминокислоты — могут синтезироваться; незаменимые аминокислоты — не могут синтезироваться. Незаменимые аминокислоты должны поступать в организм вместе с пищей. Растения синтезируют все виды аминокислот.

В зависимости от аминокислотного состава, белки бывают: полноценными — содержат весь набор аминокислот; неполноценными — какие-то аминокислоты в их составе отсутствуют. Если белки состоят только из аминокислот, их называют простыми . Если белки содержат помимо аминокислот еще и неаминокислотный компонент (простетическую группу), их называют сложными . Простетическая группа может быть представлена металлами (металлопротеины), углеводами (гликопротеины), липидами (липопротеины), нуклеиновыми кислотами (нуклеопротеины).

Все аминокислоты содержат : 1) карбоксильную группу (-СООН), 2) аминогруппу (-NH 2), 3) радикал или R-группу (остальная часть молекулы). Строение радикала у разных видов аминокислот — различное. В зависимости от количества аминогрупп и карбоксильных групп, входящих в состав аминокислот, различают: нейтральные аминокислоты , имеющие одну карбоксильную группу и одну аминогруппу; основные аминокислоты , имеющие более одной аминогруппы; кислые аминокислоты , имеющие более одной карбоксильной группы.

Аминокислоты являются амфотерными соединениями , так как в растворе они могут выступать как в роли кислот, так и оснований. В водных растворах аминокислоты существуют в разных ионных формах.

Пептидная связь

Пептиды — органические вещества, состоящие из остатков аминокислот, соединенных пептидной связью.

Образование пептидов происходит в результате реакции конденсации аминокислот. При взаимодействии аминогруппы одной аминокислоты с карбоксильной группой другой между ними возникает ковалентная азот-углеродная связь, которую и называют пептидной . В зависимости от количества аминокислотных остатков, входящих в состав пептида, различают дипептиды, трипептиды, тетрапептиды и т.д. Образование пептидной связи может повторяться многократно. Это приводит к образованию полипептидов . На одном конце пептида находится свободная аминогруппа (его называют N-концом), а на другом — свободная карбоксильная группа (его называют С-концом).

Пространственная организация белковых молекул

Выполнение белками определенных специфических функций зависит от пространственной конфигурации их молекул, кроме того, клетке энергетически невыгодно держать белки в развернутой форме, в виде цепочки, поэтому полипептидные цепи подвергаются укладке, приобретая определенную трехмерную структуру, или конформацию. Выделяют 4 уровня пространственной организации белков .

Первичная структура белка — последовательность расположения аминокислотных остатков в полипептидной цепи, составляющей молекулу белка. Связь между аминокислотами — пептидная.

Если молекула белка состоит всего из 10 аминокислотных остатков, то число теоретически возможных вариантов белковых молекул, отличающихся порядком чередования аминокислот, — 10 20 . Имея 20 аминокислот, можно составить из них еще большее количество разнообразных комбинаций. В организме человека обнаружено порядка десяти тысяч различных белков, которые отличаются как друг от друга, так и от белков других организмов.

Именно первичная структура белковой молекулы определяет свойства молекул белка и ее пространственную конфигурацию. Замена всего лишь одной аминокислоты на другую в полипептидной цепочке приводит к изменению свойств и функций белка. Например, замена в β-субъединице гемоглобина шестой глутаминовой аминокислоты на валин приводит к тому, что молекула гемоглобина в целом не может выполнять свою основную функцию — транспорт кислорода; в таких случаях у человека развивается заболевание — серповидноклеточная анемия.

Вторичная структура — упорядоченное свертывание полипептидной цепи в спираль (имеет вид растянутой пружины). Витки спирали укрепляются водородными связями, возникающими между карбоксильными группами и аминогруппами. Практически все СО- и NН-группы принимают участие в образовании водородных связей. Они слабее пептидных, но, повторяясь многократно, придают данной конфигурации устойчивость и жесткость. На уровне вторичной структуры существуют белки: фиброин (шелк, паутина), кератин (волосы, ногти), коллаген (сухожилия).

Третичная структура — укладка полипептидных цепей в глобулы, возникающая в результате возникновения химических связей (водородных, ионных, дисульфидных) и установления гидрофобных взаимодействий между радикалами аминокислотных остатков. Основную роль в образовании третичной структуры играют гидрофильно-гидрофобные взаимодействия. В водных растворах гидрофобные радикалы стремятся спрятаться от воды, группируясь внутри глобулы, в то время как гидрофильные радикалы в результате гидратации (взаимодействия с диполями воды) стремятся оказаться на поверхности молекулы. У некоторых белков третичная структура стабилизируется дисульфидными ковалентными связями, возникающими между атомами серы двух остатков цистеина. На уровне третичной структуры существуют ферменты, антитела, некоторые гормоны.

Четвертичная структура характерна для сложных белков, молекулы которых образованы двумя и более глобулами. Субъединицы удерживаются в молекуле благодаря ионным, гидрофобным и электростатическим взаимодействиям. Иногда при образовании четвертичной структуры между субъединицами возникают дисульфидные связи. Наиболее изученным белком, имеющим четвертичную структуру, является гемоглобин . Он образован двумя α-субъединицами (141 аминокислотный остаток) и двумя β-субъединицами (146 аминокислотных остатков). С каждой субъединицей связана молекула гема, содержащая железо.

Если по каким-либо причинам пространственная конформация белков отклоняется от нормальной, белок не может выполнять свои функции. Например, причиной «коровьего бешенства» (губкообразной энцефалопатии) является аномальная конформация прионов — поверхностных белков нервных клеток.

Свойства белков

Аминокислотный состав, структура белковой молекулы определяют его свойства . Белки сочетают в себе основные и кислотные свойства, определяемые радикалами аминокислот: чем больше кислых аминокислот в белке, тем ярче выражены его кислотные свойства. Способность отдавать и присоединять Н + определяют буферные свойства белков ; один из самых мощных буферов — гемоглобин в эритроцитах, поддерживающий рН крови на постоянном уровне. Есть белки растворимые (фибриноген), есть нерастворимые, выполняющие механические функции (фиброин, кератин, коллаген). Есть белки активные в химическом отношении (ферменты), есть химически неактивные, устойчивые к воздействию различных условий внешней среды и крайне неустойчивые.

Внешние факторы (нагревание, ультрафиолетовое излучение, тяжелые металлы и их соли, изменения рН, радиация, обезвоживание)

могут вызывать нарушение структурной организации молекулы белка. Процесс утраты трехмерной конформации, присущей данной молекуле белка, называют денатурацией . Причиной денатурации является разрыв связей, стабилизирующих определенную структуру белка. Первоначально рвутся наиболее слабые связи, а при ужесточении условий и более сильные. Поэтому сначала утрачивается четвертичная, затем третичная и вторичная структуры. Изменение пространственной конфигурации приводит к изменению свойств белка и, как следствие, делает невозможным выполнение белком свойственных ему биологических функций. Если денатурация не сопровождается разрушением первичной структуры, то она может быть обратимой , в этом случае происходит самовосстановление свойственной белку конформации. Такой денатурации подвергаются, например, рецепторные белки мембраны. Процесс восстановления структуры белка после денатурации называется ренатурацией . Если восстановление пространственной конфигурации белка невозможно, то денатурация называется необратимой .

Функции белков

Функция Примеры и пояснения
Строительная Белки участвуют в образовании клеточных и внеклеточных структур: входят в состав клеточных мембран (липопротеины, гликопротеины), волос (кератин), сухожилий (коллаген) и т.д.
Транспортная Белок крови гемоглобин присоединяет кислород и транспортирует его от легких ко всем тканям и органам, а от них в легкие переносит углекислый газ; в состав клеточных мембран входят особые белки, которые обеспечивают активный и строго избирательный перенос некоторых веществ и ионов из клетки во внешнюю среду и обратно.
Регуляторная Гормоны белковой природы принимают участие в регуляции процессов обмена веществ. Например, гормон инсулин регулирует уровень глюкозы в крови, способствует синтезу гликогена, увеличивает образование жиров из углеводов.
Защитная В ответ на проникновение в организм чужеродных белков или микроорганизмов (антигенов) образуются особые белки — антитела, способные связывать и обезвреживать их. Фибрин, образующийся из фибриногена, способствует остановке кровотечений.
Двигательная Сократительные белки актин и миозин обеспечивают сокращение мышц у многоклеточных животных.
Сигнальная В поверхностную мембрану клетки встроены молекулы белков, способных изменять свою третичную структуру в ответ на действие факторов внешней среды, таким образом осуществляя прием сигналов из внешней среды и передачу команд в клетку.
Запасающая В организме животных белки, как правило, не запасаются, исключение: альбумин яиц, казеин молока. Но благодаря белкам в организме могут откладываться про запас некоторые вещества, например, при распаде гемоглобина железо не выводится из организма, а сохраняется, образуя комплекс с белком ферритином.
Энергетическая При распаде 1 г белка до конечных продуктов выделяется 17,6 кДж. Сначала белки распадаются до аминокислот, а затем до конечных продуктов — воды, углекислого газа и аммиака. Однако в качестве источника энергии белки используются только тогда, когда другие источники (углеводы и жиры) израсходованы.
Каталитическая Одна из важнейших функций белков. Обеспечивается белками — ферментами, которые ускоряют биохимические реакции, происходящие в клетках. Например, рибулезобифосфаткарбоксилаза катализирует фиксацию СО 2 при фотосинтезе.

Ферменты

Ферменты , или энзимы , — особый класс белков, являющихся биологическими катализаторами. Благодаря ферментам биохимические реакции протекают с огромной скоростью. Скорость ферментативных реакций в десятки тысяч раз (а иногда и в миллионы) выше скорости реакций, идущих с участием неорганических катализаторов. Вещество, на которое оказывает свое действие фермент, называют субстратом .

Ферменты — глобулярные белки, по особенностям строения ферменты можно разделить на две группы: простые и сложные. Простые ферменты являются простыми белками, т.е. состоят только из аминокислот. Сложные ферменты являются сложными белками, т.е. в их состав помимо белковой части входит группа небелковой природы — кофактор . У некоторых ферментов в качестве кофакторов выступают витамины. В молекуле фермента выделяют особую часть, называемую активным центром. Активный центр — небольшой участок фермента (от трех до двенадцати аминокислотных остатков), где и происходит связывание субстрата или субстратов с образованием фермент-субстратного комплекса. По завершении реакции фермент-субстратный комплекс распадается на фермент и продукт (продукты) реакции. Некоторые ферменты имеют (кроме активного) аллостерические центры — участки, к которым присоединяются регуляторы скорости работы фермента (аллостерические ферменты ).

Для реакций ферментативного катализа характерны: 1) высокая эффективность, 2) строгая избирательность и направленность действия, 3) субстратная специфичность, 4) тонкая и точная регуляция. Субстратную и реакционную специфичность реакций ферментативного катализа объясняют гипотезы Э. Фишера (1890 г.) и Д. Кошланда (1959 г.).

Э. Фишер (гипотеза «ключ-замок») предположил, что пространственные конфигурации активного центра фермента и субстрата должны точно соответствовать друг другу. Субстрат сравнивается с «ключом», фермент — с «замком».

Д. Кошланд (гипотеза «рука-перчатка») предположил, что пространственное соответствие структуры субстрата и активного центра фермента создается лишь в момент их взаимодействия друг с другом. Эту гипотезу еще называют гипотезой индуцированного соответствия .

Скорость ферментативных реакций зависит от: 1) температуры, 2) концентрации фермента, 3) концентрации субстрата, 4) рН. Следует подчеркнуть, что поскольку ферменты являются белками, то их активность наиболее высока при физиологически нормальных условиях.

Большинство ферментов может работать только при температуре от 0 до 40 °С. В этих пределах скорость реакции повышается примерно в 2 раза при повышении температуры на каждые 10 °С. При температуре выше 40 °С белок подвергается денатурации и активность фермента падает. При температуре, близкой к точке замерзания, ферменты инактивируются.

При увеличении количества субстрата скорость ферментативной реакции растет до тех пор, пока количество молекул субстрата не станет равным количеству молекул фермента. При дальнейшем увеличении количества субстрата скорость увеличиваться не будет, так как происходит насыщение активных центров фермента. Увеличение концентрации фермента приводит к усилению каталитической активности, так как в единицу времени преобразованиям подвергается большее количество молекул субстрата.

Для каждого фермента существует оптимальное значение рН, при котором он проявляет максимальную активность (пепсин — 2,0, амилаза слюны — 6,8, липаза поджелудочной железы — 9,0). При более высоких или низких значениях рН активность фермента снижается. При резких сдвигах рН фермент денатурирует.

Скорость работы аллостерических ферментов регулируется веществами, присоединяющимися к аллостерическим центрам. Если эти вещества ускоряют реакцию, они называются активаторами , если тормозят — ингибиторами .

Классификация ферментов

По типу катализируемых химических превращений ферменты разделены на 6 классов:

  1. оксиредуктазы (перенос атомов водорода, кислорода или электронов от одного вещества к другому — дегидрогеназа),
  2. трансферазы (перенос метильной, ацильной, фосфатной или аминогруппы от одного вещества к другому — трансаминаза),
  3. гидролазы (реакции гидролиза, при которых из субстрата образуются два продукта — амилаза, липаза),
  4. лиазы (негидролитическое присоединение к субстрату или отщепление от него группы атомов, при этом могут разрываться связи С-С, С-N, С-О, С-S — декарбоксилаза),
  5. изомеразы (внутримолекулярная перестройка — изомераза),
  6. лигазы (соединение двух молекул в результате образования связей С-С, С-N, С-О, С-S — синтетаза).

Классы в свою очередь подразделены на подклассы и подподклассы. В действующей международной классификации каждый фермент имеет определенный шифр, состоящий из четырех чисел, разделенных точками. Первое число — класс, второе — подкласс, третье — подподкласс, четвертое — порядковый номер фермента в данном подподклассе, например, шифр аргиназы — 3.5.3.1.

    Перейти к лекции №2 «Строение и функции углеводов и липидов»

    Перейти к лекции №4 «Строение и функции нуклеиновых кислот АТФ»

ченном наследственном заболевании фенилкетонурии организм испытывает дефицит в фенилаланингидроксилазе (КФ 1.14.3.1). Вследствие этого катаболизм фенилаланина не идет до конечных продуктов через тирозин, а вступает на побочный путь дезаминирования с образованием фенилпировиноградной кислоты. Накопление последней совместно с фенилаланином приводит у детей к тяжелому заболеванию, сопровождающемуся слабоумием. При альбинизме имеет место дефект дифенолоксидазы(КФ 1.10.3.1.), при алкаптонурии – гомогентизинатоксидазы (КФ 17.1.5.), при ксантонурии – ксантиноксидазы (КФ

1.2.3.2.) и т.д.

1.5. Денатурация белка

Присущие белкам свойства, связанные с особенностями конформации их молекул, существенно изменяются при нарушении этой конформации в процессе денатурации белка.

Под денатурацией понимают превращение биологически активного, так называемого, нативного3 белка в форму, в которой его естественные свойства такие, как растворимость, электрофоретическая активность, ферментативная активность и т.д. теряются.

Денатурация является характерным признаком белков и не наблюдается у аминокислот и низкомолекулярных пептидов. Денатурация, как правило, связана с нарушением третичной и частично, вторичной структуры белковой молекулы и не сопровождается какими либо изменениями первичной структуры. Естественно поэтому, что при денатурации белка разрушаются, главным образом, водородные связи и дисульфидные мостики в белковой молекуле.

Денатурирующие агенты делятся на физические и химические. К физическим факторам принадлежит нагревание (свыше 50-60° С), повышенное давление, ультразвук и т.д., к химическим – ионы Н+ и ОН– (обычно при рН ниже 4 и выше 10 – денатурация), органические растворители (ацетон, спирт), мочевина, соли тяжелых металлов и др. Белки денатурируются и под влиянием детергентов (от лат. Detergeo – раздроблю, разобью, чищу), обладающих мылоподобным действием, хотя при этом в большинстве случаев денатурированный белок остается в растворимом виде. Обезвоживание, высушивание белков при комнатной температуре влечет за собой, как правило, полную денатурацию. Все это говорит о большом разнообразии денатурирующих агентов и механизма их действия.

3 Нативной конформацией белка называют характерную трехмерную структуру белка, в которой он стабилен и проявляет биологическую активность при определенных физических условиях (температура, рН и др.).

Третичной структурой белка называется способ укладки полипептидной цепи в трехмерном пространстве. Такая конформация возникает за счет образования химических связей между удаленными друг от друга аминокислотными радикалами. Этот процесс осуществляется при участии молекулярных механизмов клетки и играет огромную роль в придании белкам функциональной активности.

Особенности третичной структуры

Для третичной структуры белков характерны следующие типы химических взаимодействий:

  • ионные;
  • водородные;
  • гидрофобные;
  • ван-дер-ваальсовы;
  • дисульфидные.

Все эти связи (кроме ковалентной дисульфидной) очень слабые, однако за счет количества стабилизируют пространственную форму молекулы.

Фактически третий уровень укладки полипептидных цепей представляет собой комбинацию различных элементов вторичной структуры (α-спиралей; β-складчатых слоев и петель), которые ориентируются в пространстве за счет химических взаимодействий между боковыми аминокислотными радикалами. Для схематичного обозначения третичной структуры белка α-спирали обозначаются цилиндрами или спирально закрученными линиями, складчатые слои — стрелками, а петли — простыми линиями.

Характер третичной конформации определяется последовательностью аминокислот в цепи, поэтому двум молекулам с одинаковой первичной структурой при равных условиях будет соответствовать один и тот же вариант пространственной укладки. Такая конформация обеспечивает функциональную активность белка и называется нативной.

В процессе укладки белковой молекулы происходит сближение компонентов активного центра, которые в первичной структуре могут быть значительно удалены друг от друга.

Для одноцепочечных белков третичная структура является конечной функциональной формой. Сложные многосубъединичные белки образуют четвертичную структуру, которая характеризует расположение нескольких цепей по отношению друг к другу.

Характеристика химических связей в третичной структуре белка

В значительной степени сворачивание полипептидной цепи обусловлено соотношением гидрофильных и гидрофобных радикалов. Первые стремятся вступить во взаимодействие с водородом (составным элементом воды) и потому находятся на поверхности, а гидрофобные участки наоборот устремляются в центр молекулы. Такая конформация энергетически наиболее выгодна. В результате формируется глобула с гидрофобной сердцевиной.

Гидрофильные радикалы, которые все же попадают в центр молекулы, взаимодействуют друг с другом с образованием ионных или водородных связей. Ионные связи могут возникать между противоположно заряженными аминокислотными радикалами, в качестве которых выступают:

  • катионные группы аргинина, лизина или гистидина (имеют положительный заряд);
  • карбоксильные группы радикалов глутаминовой и аспарагиновой кислоты (имеют отрицательный заряд).

Водородные связи образуются при взаимодействии незаряженных (OH, SH, CONH 2) и заряженных гидрофильных групп. Ковалентные связи (самые прочные в третичной конформации) возникают между SH-группами цистеиновых остатков, формируя так называемые дисульфидные мостики. Обычно эти группы удалены друг от друга в линейной цепи и сближаются только в процессе укладки. Дисульфидные связи не характерны для большинства внутриклеточных белков.

Конформационная лабильность

Так как связи, формирующие третичную структуру белка, очень слабые, броуновское движение атомов в аминокислотной цепи может привести к их разрыву и образованию в новых местах. Это приводит к незначительному изменению пространственной формы отдельных участков молекулы, но не нарушает нативную конформацию белка. Такое явление называют конформационной лабильностью. Последняя играет огромную роль в физиологии клеточных процессов.

На конформацию белка влияют его взаимодействия с другими молекулами или изменения физико-химических параметров среды.

Как образуется третичная структура белка

Процесс укладки белка в нативную форму называется фолдингом. В основе этого явления лежит стремление молекулы принять конформацию с минимальным значением свободной энергии.

Ни один белок не нуждается в посредниках-инструкторах, которые будут определять третичную структуру. Схема укладки изначально "записана" в последовательности аминокислот.

Однако при обычных условиях, для того чтобы крупная белковая молекула приняла нативную конформацию соответственно первичной структуре, ей потребовалось бы более триллиона лет. Тем не менее в живой клетке этот процесс длится всего лишь несколько десятков минут. Столь значительное сокращение времени обеспечивается участием в фолдинге специализированных вспомогательных белков — фолдаз и шаперонов.

Сворачивание маленьких белковых молекул (до 100 аминокислот в цепи) происходит достаточно быстро и без участия посредников, что показали эксперименты in vitro.

Факторы фолдинга

Участвующие в фолдинге вспомогательные белки делятся на две группы:

  • фолдазы — обладают каталитической активностью, требуются в количестве, значительно уступающем концентрации субстрата (как и другие ферменты);
  • шапероны — белки с разнообразными механизмами действия, нужны в концентрации, сопоставимой с количеством сворачиваемого субстрата.

Оба типа факторов участвуют в фолдинге, но не входят в состав конечного продукта.

Группу фолдаз представляют 2 фермента:

  • Протеиндисульфидизомераза (ПДИ) — контролирует правильное образование дисульфидных связей в белках с большим количеством остатков цистеина. Эта функция очень важна, поскольку ковалентные взаимодействия очень прочные, и в случае возникновения ошибочных соединений белок не смог бы самостоятельно перестроиться и принять нативную конформацию.
  • Пептидил-пролил-цис-транс-изомераза — обеспечивает изменение конфигурации радикалов, расположенных по бокам от пролина, что изменяет характер изгиба полипептидной цепи на этом участке.

Таким образом, фолдазы выполняют корректирующую роль в образовании третичной конформации белковой молекулы.

Шапероны

Шапероны иначе называются или стресса. Это связано со значительным увеличением их секреции при отрицательных воздействиях на клетку (температура, радиация, тяжелые металлы и т. д.).

Шапероны принадлежат к трем семействам белков: hsp60, hsp70 и hsp90. Эти протеины выполняют множество функции, включая:

  • защиту белков от денатурации;
  • исключение взаимодействия только что синтезированных белков друг с другом;
  • предупреждение образования неправильных слабых связей между радикалами и их лабиализация (исправление).

Таким образом, шапероны способствуют быстрому приобретению энергитически правильной конформации, исключая случайный перебор множества вариантов и ограждая еще не созревшие белковые молекулы от ненужного взаимодействия друг с другом. Кроме этого, шапероны обеспечивают:

  • некоторые виды транспортировки белков;
  • контроль рефолдинга (восстановления третичной структуры после ее утраты);
  • поддержание состояния неоконченного фолдинга (для некоторых белков).

В последнем случае молекула шаперона остается связанной с белком по завершении процесса укладки.

Денатурация

Нарушение третичной структуры белка под воздействием каких-либо факторов называется денатурацией. Потеря нативной конформации происходит при разрушении большого количества слабых связей, стабилизирующих молекулу. При этом белок теряет свою специфическую функцию, но сохраняет первичную структуру (пептидные связи во время денатурации не разрушаются).

При денатурации происходит пространственное увеличение белковой молекулы, а гидрофобные участки вновь выходят на поверхность. Полипептидная цепь приобретает конформацию беспорядочного клубка, форма которого зависит от того, какие связи третичной структуры белка были разорваны. В таком виде молекула более восприимчива к воздействию протеолитических ферментов.

Факторы, нарушающие третичную структуру

Существует целый ряд физико-химических воздействий, способных вызвать денатурацию. К ним относят:

  • температуру выше 50 градусов;
  • радиацию;
  • изменение pH среды;
  • соли тяжелых металлов;
  • некоторые органические соединения;
  • детергенты.

После прекращения денатурирующего воздействия белок может восстановить третичную структуру. Этот процесс называется ренатурацией или рефолдингом. В условиях in vitro такое возможно только для небольших белков. В живой клетке рефолдинг обеспечивают шапероны.

Белки и их функции.

Изучим основные вещества составляющие наши с вами организмы. Одни из них самых важных это белки.

Белки (протеины, полипептиды) – углеродные вещества, состоящие из соединенных в цепочку аминокислот . Являются обязательной составной частью всех клеток.

Аминокислоты - углеродные соединения, в молекулах которых одновременно содержатся карбоксильные (-COOH) и аминные (NH2) группы.

Соединение, состоящее из большого числа аминокислот, называется - полипептидом . Каждый белок по своему химическому строению является полипептидом. Некоторые белки состоят из нескольких полипептидных цепей. В составе большинства белков находится в среднем 300-500 остатков аминокислот. Известно несколько очень коротких природных белков, длиной в 3-8 аминокислот, и очень длинных биополимеров, длиной более чем в 1500 аминокислот.

Свойства белков, определяет их аминокислотный состав, в строго зафиксированной последовательности, а аминокислотный состав в свою очередь определяется генетическим кодом. При создании белков используется 20 стандартных аминокислот.

Структура белков.

Выделяют несколько уровней:

- Первичная структура - определяется порядком чередования аминокислот в полипептидной цепи.

Двадцать разных аминокислот можно уподобить 20 буквам химического алфавита, из которых составлены «слова» длиной в 300-500 букв. С помощью 20 букв можно написать безграничное множество таких длинных слов. Если считать, что замена или перестановка хотя бы одной буквы в слове придает ему новый смысл, то число комбинаций в слове длиной в 500 букв составит 20500.

Известно, что замена даже одного аминокислотного звена другим в белковой молекуле изменяет ее свойства. В каждой клетке содержится несколько тысяч разных видов белковых молекул, и для каждого из них характерна строго определенная последовательность аминокислот. Именно порядок чередования аминокислот в данной белковой молекуле определяет ее особые физико-химические и биологические свойства. Исследователи умеют расшифровывать последовательность аминокислот в длинных белковых молекулах и синтезировать такие молекулы.

- Вторичная структура – белковые молекулы в виде спирали, с одинаковыми расстояниями между витками.

Между группами N-Н и С=О, расположенными на соседних витках, возникают водородные связи. Они повторенные многократно, скрепляют регулярные витки спирали.

- Третичная структура – образование спиралиевого клубка.

Этот клубок образован закономерным переплетением участков белковой цепи. Положительно и отрицательно заряженные группы аминокислот притягиваются и сближают даже далеко отстоящие друг от друга участки белковой цепи. Сближаются и иные участки белковой молекулы, несущие, например, «водоотталкивающие» (гидрофобные) радикалы.

Для каждого вида белка характерна своя форма клубка с изгибами и петлями. Третичная структура зависит от первичной структуры, т. е. от порядка расположения аминокислот в цепи.
- Четвертичная структура – сборный белок, состоящий из нескольких цепей, отличающихся по первичной структуре.
Объединяясь вместе, они создают сложный белок, обладающий не только третичной, но и четвертичной структурой.

Денатурация белка.

Под действием ионизирующей радиации, высокой температуры, сильного взбалтывания, экстремальных значений рН (концентрация йонов водорода), а также ряда органических растворителей, таких, как спирт или ацетон, белки изменяют свое естественное состояние. Нарушение природной структуры белка называют денатурацией. Подавляющее большинство белков утрачивает при этом биологическую активность, хотя первичная структура их после денатурации не меняется. Дело в том, что в процессе денатурации нарушаются вторичная, третичная и четвертичная структуры, обусловленные слабыми взаимодействиями между аминокислотными остатками, а ковалентные пептидные связи (с объединением электронов) не разрываются. Необратимую денатурацию можно наблюдать при нагревании жидкого и прозрачного белка куриного яйца: он становится плотным и непрозрачным. Денатурация может быть и обратимой. После устранения денатурирующего фактора многие белки способны вернуть естественную форму, т.е. ренатурировать.

Способность белков к обратимому изменению пространственной структуры в ответ на действие физических или химических факторов лежит в основе раздражимости - важнейшего свойства всех живых существ.

Функции белков.

Каталитическая.

В каждой живой клетке происходят непрерывно сотни биохимических реакций. В ходе этих реакций идут расщепление и окисление поступающих извне питательных веществ. Полученную вследствие окисления энергию питательных веществ и продукты их расщепления клетка использует для синтеза необходимых ей разнообразных органических соединений. Быстрое протекание таких реакций обеспечивают биологические катализаторы, или ускорители реакций, - ферменты. Известно более тысячи разных ферментов. Все они белки.
Белки-ферменты – ускоряют протекающие реакции в организме. Ферменты учавствуют в расщеплении сложных молекул (катаболизм) и их синтезе (анаболизм) а также создания и ремонте ДНК и матричного синтеза РНК.

Структурная.

Структурные белки цитоскелета, как своего рода арматура, придают форму клеткам и многим органоидам и участвуют в изменении формы клеток. Коллаген и эластин - основные компоненты межклеточного вещества соединительной ткани (например, хряща), а из другого структурного белка кератина состоят волосы, ногти, перья птиц и некоторые раковины.

Защитная.

  1. Физическая защита. (пример: коллаген - белок, образующий основу межклеточного вещества соединительных тканей)
  1. Химическая защита. Связывание токсинов белковыми молекулами обеспечивает их детоксикацию. (пример: ферменты печени, расщепляющие яды или переводящие их в растворимую форму, что способствует их быстрому выведению из организма)
  1. Иммунная защита. На попадание бактерий или вирусов в кровь животных и человека организм реагирует выработкой специальных защитных белков - антител. Эти белки связываются с чужеродными для организма белками возбудителей заболеваний, чем подавляется их жизнедеятельность. На каждый чужеродный белок организм вырабатывает специальные «антибелки» - антитела.
Регуляторная.

Гормоны переносятся кровью. Большинство гормонов животных - это белки или пептиды. Связывание гормона с рецептором является сигналом, запускающим в клетке ответную реакцию. Гормоны регулируют концентрации веществ в крови и клетках, рост, размножение и другие процессы. Примером таких белков служит инсулин , который регулирует концентрацию глюкозы в крови.

Клетки взаимодействуют друг с другом с помощью сигнальных белков, передаваемых через межклеточное вещество. К таким белкам относятся, например, цитокины и факторы роста.

Цитокины - небольшие пептидные информационные молекулы. Они регулируют взаимодействия между клетками, определяют их выживаемость, стимулируют или подавляют рост, дифференцировку, функциональную активность и программируемую клеточную смерть, обеспечивают согласованность действий иммунной, эндокринной и нервной систем.

Транспортная.

Только белки осуществляют перенос веществ в крови, например, липопротеины (перенос жира), гемоглобин (транспорт кислорода), трансферрин (транспорт железа) или через мембраны- Na+,К+-АТФаза (противоположный трансмембранный перенос ионов натрия и калия), Са2+-АТФаза (выкачивание ионов кальция из клетки).

Рецепторная.

Белковые рецепторы могут как находиться в цитоплазме, так и встраиваться в клеточную мембрану. Одна часть молекулы рецептора воспринимает сигнал, которым чаще всего служит химическое вещество, а в некоторых случаях - свет, механическое воздействие (например, растяжение) и другие стимулы.

Строительная.

Животные в процессе эволюции утратили способность осуществлять синтез десяти особенно сложных аминокислот, называемых незаменимыми. Они получают их в готовом виде с растительной и животной пищей. Такие аминокислоты содержатся в белках молочных продуктов (молоко, сыр, творог), в яйцах, рыбе, мясе, а также в сое, бобах и некоторых других растениях. В пищеварительном тракте белки расщепляются до аминокислот, которые всасываются в кровь и попадают в клетки. В клетках из готовых аминокислот строятся собственные белки, характерные для данного организма. Белки являются обязательным компонентом всех клеточных структур и в этом состоит их важная строительная роль.

Энергетическая.

Белки могут служить источником энергии для клетки. При недостатке углеводов или жиров окисляются молекулы аминокислот. Освободившаяся при этом энергия используется на поддержание процессов жизнедеятельности организма. При длительном голодании используются белки мышц, лимфоидных органов, эпителиальных тканей и печени.

Моторная (двигательная).

Целый класс моторных белков обеспечивает движения организма, например, сокращение мышц, в том числе движение миозиновых мостиков в мышце, перемещение клеток внутри организма (например, амебоидное движение лейкоцитов).

На самом деле это очень краткое описание функций белков, которое только наглядно может продемонстрировать их функции и значимость в организме.

Немного видео для понимания о белках: