Меню
Бесплатно
Главная  /  Лечение  /  Все формулы по цилиндру. Радиус цилиндра, онлайн расчет

Все формулы по цилиндру. Радиус цилиндра, онлайн расчет


Формула радиуса цилиндра:
где V - объем цилиндра, h - высота

Цилиндр - геометрическое тело, которое получается при вращении прямоугольника вокруг его стороны. Также, цилиндр представляет собой тело, ограниченное цилиндрической поверхностью и двумя параллельными плоскостями, пересекающими ее. Эта поверхность образуется при движении прямой параллельно самой себе. При этом выделенная точка прямой перемещается вдоль определенной плоской кривой (направляющая). Данная прямая называется образующей цилиндрической поверхности.
Формула радиуса цилиндра:
где Sb - площадь боковой поверхности, h - высота

Цилиндр - геометрическое тело, которое получается при вращении прямоугольника вокруг его стороны. Также, цилиндр представляет собой тело, ограниченное цилиндрической поверхностью и двумя параллельными плоскостями, пересекающими ее. Эта поверхность образуется при движении прямой параллельно самой себе. При этом выделенная точка прямой перемещается вдоль определенной плоской кривой (направляющая). Данная прямая называется образующей цилиндрической поверхности.
Формула радиуса цилиндра:
где S - площадь полной поверхности, h - высота

Рассмотрим цилиндр вращения радиуса R и высоты h (рис. 383). В основание этого цилиндра впишем правильный многоугольник (на рис. 383 - шестиугольник) и с его помощью построим правильную призму, вписанную в цилиндр. Таким же путем можно описывать вокруг цилиндра правильные призмы с произвольно большим числом боковых граней.

За площадь боковой поверхности цилиндра принимается по определению предел, к которому стремятся площади боковых поверхностей вписанных и описанных вокруг него правильных призм по мере неограниченного удвоения (или вообще увеличения) числа их боковых граней.

То, что такой предел существует, мы сейчас и докажем. Если возьмем вписанную правильную призму, построенную на правильном -угольнике, как на основании, то для ее боковой поверхности будем иметь выражение , где - периметр правильного -угольника, вписанного в круг основания цилиндра. При . Точно такое же вычисление для описанной призмы дает тот же самый результат. Итак, площадь боковой поверхности цилиндра вращения выражается формулой

Боковая поверхность цилиндра равна произведению длины образующей на периметр (т. е. длину окружности) основания.

Задача 1. Отрезок, соединяющий диаметрально противоположные точки А и В верхнего и нижно оснований цилиндра (рис. 384), равен 10 см и наклонен к плоскости основания под углом в 60°. Найти площадь боковой поверхности цилиндра.

Решение. Проведем через отрезок Л Всечение плоскостью, перпендикулярной к основанию цилиндра. Из треугольника имеем

откуда находим для боковой поверхности цилиндра

Задача 2. Треугольник ABC, вершины А и В которого суть концы диаметра нижнего основания цилиндра, а вершина С-конец перпендикулярного к нему диаметра верхнего основания, равносторонний со стороной а,

Найти площади боковой и полной поверхностей цилиндра. Решение. Радиус основания цилиндра равен Высота треугольника ABC (рис. 385) равна а образующая цилиндра вычисляется как

Отсюда боковая поверхность цилиндра получается равной

а полная поверхность (равная сумме площади боковой поверхности и площади двух оснований цилиндра) равна

Упражнения

1. Диагонали боковых граней прямоугольного параллелепипеда наклонены к плоскости основания под углами, соответственно равными . Найти угол наклона к той же плоскости диагонали параллелепипеда.

2. В прямом параллелепипеде острый угол основания равен а, а одна из сторон основания равна а. Сечение, проведенное через эту сторону и противоположное ребро верхнего основания, имеет площадь Q, и плоскость его наклонена к плоскости основания под углом . Найти объем и полную поверхность параллелепипеда.

3. Основанием наклонной треугольной призмы служит равнобедренный прямоугольный треугольник, а проекция одного из боковых ребер на плоскость основания совпадает с медианой m одного из катетов треугольника. Найти угол наклона боковых ребер к плоскости основания, если объем призмы равен V.

4. В правильной шестиугольной призме через сторону основания проведены два сечения: 1) содержащее противоположную сторону верхнего основания, 2) содержащее центр верхнего основания. При какой высоте призмы угол между плоскостями сечений имеет наибольшую величину и чему он равен в этом случае?

Как вычислить площадь поверхности цилиндра - тема данной статьи. В любой математической задаче начать нужно с ввода данных, определить, что известно и чем оперировать в дальнейшем, и лишь затем приступить непосредственно к расчету.

Данное объёмное тело представляет собой геометрическую фигуру цилиндрической формы, ограниченную сверху и снизу двумя параллельными плоскостями. Если приложить немного воображения, то можно заметить, что геометрическое тело образуется вращением прямоугольника вокруг оси, причем осью является одна из его сторон.

Отсюда вытекает, что описываемая кривая сверху и снизу цилиндра будет окружностью, основным показателем которой является радиус или диаметр.

Площадь поверхности цилиндра — онлайн калькулятор

Данная функция окончательно облегчает процесс расчета, и все сводится лишь автоматическому подставлению заданных значений высоты и радиуса (диаметра) основания фигуры. Единственное, что требуется - точно определить данные и не ошибиться при вводе цифр.

Площадь боковой поверхности цилиндра

Сначала нужно представить, как выглядит развертка в двухмерном пространстве.

Это не что иное, как прямоугольник, одна сторона которого равна длине окружности. Формула ее известна с незапамятных времен -2π * r , где r - радиус окружности. Другая сторона прямоугольника равна высоте h . Найти искомое не составит труда.

S бок = 2π * r * h ,

где число π = 3.14.

Площадь полной поверхности цилиндра

Для нахождения полной площади цилиндра нужно к полученной S бок добавить площади двух окружностей, верха и низа цилиндра, которые считаются по формуле S о = 2π * r 2 .

Конечная формула выглядит следующим образом:

S пол = 2π * r 2 + 2π * r * h.

Площадь цилиндра — формула через диаметр

Для облегчения расчетов иногда требуется произвести вычисления через диаметр. Например, имеется кусок полой трубы известного диаметра.

Не утруждая себя лишними расчетами, имеем готовую формулу. На помощь приходит алгебра за 5 класс.

S пол = 2 π * r 2 + 2 π * r * h = 2 π * d 2 /4 + 2 π * h * d /2 = π * d 2 /2 + π * d * h ,

Вместо r в полную формулу нужно вставить значение r = d/2 .

Примеры расчета площади цилиндра

Вооружившись знаниями, приступаем к практике.

Пример 1. Нужно вычислить площадь усеченного куска трубы, то есть цилиндра.

Имеем r = 24 mm, h = 100 mm. Использовать необходимо формулу через радиус:

S пол = 2 * 3.14 * 24 2 + 2 * 3.14 * 24 * 100 = 3617,28 + 15072 = 18689,28 (мм 2).

Переводим в привычные м 2 и получаем 0,01868928, приблизительно 0.02 м 2 .

Пример 2. Требуется узнать площадь внутренней поверхности печной асбестовой трубы, стенки которой облицованы огнеупорным кирпичом.

Данные следующие: диаметр 0,2 м; высота 2 м. Используем формулу через диаметр:

S пол = 3.14 * 0.2 2 /2 + 3,14 * 0.2 * 2 = 0,0628 + 1.256 = 1.3188 м 2 .

Пример 3. Как узнать, сколько материла нужно для пошива мешка, r = 1 м и высотой 1 м.

Один момент, есть формула:

S бок = 2 * 3.14 * 1 * 1 = 6.28 м 2 .

Заключение

В конце статьи назрел вопрос: а так ли необходимы все эти вычисления и переводы одних значений в другие. Зачем все это нужно и самое главное, для кого? Но не стоит пренебрегать и забывать простые формулы из средней школы.

Мир стоял и будет стоять на элементарных познаниях, из математики, в том числе. И, приступая к какой-нибудь важной работе, никогда не лишне освежить в памяти данные выкладки, применив их на практике с большим эффектом. Точность – вежливость королей.

Цилиндр – это фигура, состоящая из цилиндрической поверхности и двух окружностей, расположенных параллельно. Расчет площади цилиндра – это задача геометрического раздела математики, которая решается достаточно просто. Существует несколько методов ее решения, которые в результате всегда сводятся к одной формуле.

Как найти площадь цилиндра – правила вычисления

  • Чтобы узнать площадь цилиндра, необходимо две площади основания сложить с площадью боковой поверхности: S= Sбок.+ 2Sосн. В более развернутом варианте данная формула выглядит так: S= 2 π rh+ 2 π r2= 2 π r(h+ r).
  • Площадь боковой поверхности данного геометрического тела можно высчитать, если известны его высота и радиус окружности, лежащей в основании. В данном случае можно выразить радиус из длины окружности, если она дана. Высота может быть найдена, если в условии задано значение образующей. В этом случае образующая будет равна высоте. Формула боковой поверхности данного тела выглядит так: S= 2 π rh.
  • Площадь основания считается по формуле нахождения площади круга: S osn= π r 2 . В некоторых задачах может не даваться радиус, но задаваться длина окружности. С данной формулы радиус выражается достаточно легко. С=2π r, r= С/2π. Нужно также помнить о том, что радиус – это половина диаметра.
  • При выполнении всех этих расчетов число π обычно не переводится в 3,14159… Его нужно просто дописывать рядом с числовым значением, которое было получено в результате проведения вычислений.
  • Далее необходимо лишь умножить найденную площадь основания на 2 и прибавить к полученному числу вычисленную площадь боковой поверхности фигуры.
  • Если в задаче указывается, что в цилиндре есть осевое сечение и это – прямоугольник, то решение будет немного другим. В таком случае ширина прямоугольника будет являться диаметром окружности, лежащей в основании тела. Длина фигуры будет равна образующей или высоте цилиндра. Необходимо высчитать нужные значения и подставить в уже известную формулу. В данном случае ширину прямоугольника нужно разделить на два, чтобы найти площадь основания. Для нахождения боковой поверхности длина умножается на два радиуса и на число π.
  • Можно высчитать площадь данного геометрического тела через его объем. Для этого нужно из формулы V=π r 2 h вывести недостающую величину.
  • В вычислении площади цилиндра нет ничего сложного. Нужно только знать формулы и уметь выводить из них величины, необходимые для проведения расчетов.

Найдите площадь осевого сечения, перпендикулярного основаниям цилиндра. Одна из сторон этого прямоугольника равна высоте цилиндра, вторая - диаметру окружности основания. Соответственно, площадь сечения в этом случае будет равна произведению сторон прямоугольника. S=2R*h, где S - площадь сечения, R – радиус окружности основания, заданный условиями задачи, а h - высота цилиндра, также заданная условиями задачи.

Если сечение перпендикулярно основаниям, но при этом не проходит через ось вращения, прямоугольника не будет равняться диаметру окружности. Ее нужно вычислить. Для этого в задачи должно быть сказано, на каком расстоянии от оси вращения проходит плоскость сечения. Для удобства вычислений постройте окружность основания цилиндра, проведите радиус и отложите на нем расстояние, на котором от центра окружности находится сечение. От этой точки проведите к перпендикуляры до их пересечения с окружностью. Соедините точки пересечения с центром. Вам нужно найти хорды. Найдите размер половины хорды по теореме Пифагора. Он будет равняться квадратному корню из разности квадратов радиуса окружности от центра до линии сечения. a2=R2-b2. Вся хорда будет, соответственно, равна 2а. Вычислите площадь сечения, которая равна произведению сторон прямоугольника, то есть S=2a*h.

Цилиндр можно рассечь , не проходящей через плоскости основания. Если поперечное сечение проходит перпендикулярно оси вращения, то оно будет представлять собой круг. Площадь его в этом случае равна площади оснований, то есть вычисляется по формуле S=πR2.

Полезный совет

Чтобы точнее представить себе сечение, сделайте чертеж и дополнительные построения к нему.

Источники:

  • сечение цилиндра площадь

Линия пересечения поверхности с плоскостью принадлежит одновременно поверхности и секущей плоскости. Линия пересечения цилиндрической поверхности секущей плоскостью, параллельной прямой образующей – прямая линия. Если секущая плоскость перпендикулярна к оси поверхности вращения – в сечении будет окружность. В общем случае линия пересечения цилиндрической поверхности с секущей плоскостью – кривая линия.

Вам понадобится

  • Карандаш, линейка, треугольник, лекала, циркуль, измеритель.

Инструкция

На фронтальной плоскости проекций П₂ линия сечения совпадает с проекцией секущей плоскости Σ₂ в виде прямой.
Обозначьте точки пересечения образующих цилиндра с проекцией Σ₂ 1₂, 2₂ и т.д. до точек 10₂ и 11₂.

На плоскости П₁ – это окружность. Отмеченные на плоскости сечения Σ₂ точки 1₂ , 2₂ и т.д. с помощью линии проекционной связи спроектируются на очерке этой окружности. Обозначьте их горизонтальные проекции симметрично относительно горизонтальной оси окружности.

Таким образом, проекции искомого сечения определены: на плоскости П₂ – прямая (точки 1₂, 2₂…10₂); на плоскости П₁ – окружность (точки 1₁, 2₁…10₁).

По двум постройте натуральную величину сечения данного цилиндра фронтально-проектирующей плоскостью Σ. Для этого используйте способ проекций.

Проведите плоскость П₄ параллельно проекции плоскости Σ₂. На этой новой оси x₂₄ отметьте точку 1₀. Расстояния между точками 1₂ – 2₂, 2₂ – 4₂ и т.д. с фронтальной проекции сечения отложите на оси x₂₄, проведите тонкие линии проекционной связи перпендикулярно оси x₂₄.

В данном способе плоскостью П₄ заменяется плоскость П₁, поэтому с горизонтальной проекции размеры от оси до точек перенесите на ось плоскости П₄.

Например, на П₁ для точек 2 и 3 это будет расстояние от 2₁ и 3₁ до оси(точка А) и т.д.

Отложив с горизонтальной проекции указанные расстояния, получите точки 2₀, 3₀, 6₀, 7₀, 10₀, 11₀. Затем для большей точности построения, определяются остальные, промежуточные, точки.

Соединив лекальной кривой все точки, получите искомую натуральную величину сечения цилиндра фронтально-проектирующей плоскостью.

Источники:

  • как заменить плоскость

Совет 3: Как найти площадь осевого сечения усеченного конуса

Чтобы решить данную задачу, необходимо вспомнить, что такое усеченный конус и какими свойствами он обладает. Обязательно сделайте чертеж. Это позволит определить, какую геометрическую фигуру представляет собой сечение . Вполне возможно, что после этого решение задачи уже не будет представлять для вас сложности.

Инструкция

Круглый конус – тело, полученное путем вращения треугольника вокруг одного из его катетов. Прямые, исходящие из вершины конуса и пересекающие его основание, называются образующими. Если все образующие равны, то конус является прямым. В основании круглого конуса лежит круг. Перпендикуляр, опущенный на основание из вершины, является высотой конуса . У круглого прямого конуса высота совпадает с его осью. Ось – это прямая, соединяющая с центром основания. Если горизонтальная секущая плоскость кругового конуса , то его верхнее основание представляет собой круг.

Поскольку в условии задачи не оговорено, именно конус дается в данном случае, можно сделать вывод, что это прямой усеченный конус, горизонтальное сечение которого параллельно основанию. Его осевое сечение, т.е. вертикальная плоскость, которая через ось круглого конуса , представляет собой равнобочную трапецию. Все осевые сечения круглого прямого конуса равны между собой. Следовательно, чтобы найти площадь осевого сечения , требуется найти площадь трапеции, основаниями которой диаметры оснований усеченного конуса , а боковые стороны – его образующие. Высота усеченного конуса является одновременно высотой трапеции.

Площадь трапеции определяется по формуле:S = ½(a+b) h, где S – площадь трапеции;a – величина нижнего основания трапеции;b – величина ее верхнего основания;h – высота трапеции.

Поскольку в условии не оговорено, какие именно даны, можно , что диаметры обеих оснований усеченного конуса известны: AD = d1 – диаметр нижнего основания усеченного конуса ;BC = d2 – диаметр его верхнего основания; EH = h1 – высота конуса .Таким образом, площадь осевого сечения усеченного конуса определяется: S1 = ½ (d1+d2) h1

Источники:

  • площадь усеченного конуса

Цилиндр является пространственной фигурой и состоит из двух равных оснований, которые представляют собой круги и боковой поверхности, соединяющей линии, ограничивающие основания. Чтобы вычислить площадь цилиндра , найдите площади всех его поверхностей и сложите их.