Меню
Бесплатно
Главная  /  Медикаменты  /  Что мертвое пространство. Анатомическое и альвеолярное мертвое пространство. Смешанная венозная кровь и оксигенация

Что мертвое пространство. Анатомическое и альвеолярное мертвое пространство. Смешанная венозная кровь и оксигенация

Оглавление темы "Вентиляция легких. Перфузия легких кровью.":

2. Перфузия легких кровью. Влияние гравитации на вентиляцию легких. Влияние гравитации на перфузию легких кровью.
3. Коэффициент вентиляционно-перфузионных отношений в легких. Газообмен в легких.
4. Состав альвеолярного воздуха. Газовый состав альвеолярного воздуха.
5. Напряжение газов в крови капилляров легких. Скорость диффузии кислорода и углекислого газа в легких. Уравнение Фика.
6. Транспорт газов кровью. Транспорт кислорода. Кислородная емкость гемоглобина.
7. Сродство гемоглобина к кислороду. Изменение сродства гемоглобина к кислороду. Эффект Бора.
8. Углекислый газ. Транспорт углекислого газа.
9. Роль эритроцитов в транспорте углекислого газа. Эффект Холдена..
10. Регуляция дыхания. Регуляция вентиляции легких.

Вентиляцией легких обозначают процесс обмена воздуха между легкими и атмосферой. Количественным показателем вентиляции легких служит минутный объем дыхания, определяемый как количество воздуха, которое проходит (или вентилируется) через легкие в 1 мин. В покое у человека минутный объем дыхания составляет 6-8 л/мин. Только часть воздуха, которым вентилируются легкие, достигает альвеолярного пространства и непосредственно участвует в газообмене с кровью. Эта часть вентиляции легких называется альвеолярной вентиляцией . В покое альвеолярная вентиляция равна в среднем 3,5-4,5 л/мин. Основная функция альвеолярной вентиляции заключается в поддержании необходимой для газообмена концентрации 02 и С02 в воздухе альвеол.

Рис. 10.11. Схема дыхательных путей легких человека . Дыхательные пути от уровня трахеи (1-я генерация) до долевых бронхов (2-4-я генерации деления) поддерживают свой просвет благодаря хрящевым кольцам в их стенке. Дыхательные пути от сегментарных бронхов (5-11-я генерации) до терминальных бронхиол (12- 16-я генерации) стабилизируют свой просвет с помощью тонуса гладких мышц их стенок. 1-16-я генерации дыхательных путей образуют возду-хопроводящую зону легких, в которой не происходит газообмена. Респираторная зона легких имеет длину порядка 5 мм и включает первичные дольки или ацинусы: дыхательные бронхиолы (17-19-я генерации) и альвеолярные протоки (20-22-я генерации). Альвеолярные мешочки состоят из многочисленных альвеол (23-я генерация), альвеолярная мембрана которых является идеальным местом для диффузии 02 и С02.

Легкие состоят из воздухопроводящей (дыхательные пути ) и респираторной зон (альвеолы ). Дыхательные пути , начиная от трахеи и до альвеол, делятся по типу дихотомии и образуют 23 генерации элементов дыхательного тракта (рис. 10.11). В воздухопроводящей или кондуктивной зонах легких (16 генераций) отсутствует газообмен между воздухом и кровью, поскольку в этих отделах дыхательные пути не имеют достаточной для этого процесса сосудистой сети, а стенки дыхательных путей, из-за их значительной толщины, препятствуют обмену газов через них. Этот отдел воздухоносных путей называется анатомическим мертвым пространством, объем которого составляет в среднем 175 мл. На рис. 10.12 показано, каким образом воздух, заполняющий анатомическое мертвое пространство в конце выдоха, смешивается с «полезным», т. е. атмосферным воздухом и вновь поступает в альвеолярное пространство легких .


Рис. 10.12. Эффект воздуха мертвого (вредного) пространства на вдыхаемый воздух в легкие . В конце выдоха анатомическое мертвое пространство заполняется выдыхаемым воздухом, в котором пониженное количество кислорода и высокое процентное содержание углекислого газа. При вдохе «вредный» воздух анатомического мертвого пространства смешивается с «полезным» атмосферным воздухом. Эта газовая смесь, в которой меньше, чем в атмосферном воздухе, кислорода и больше углекислого газа, поступает в респираторную зону легких. Поэтому газообмен в легких происходит между кровью и альвеолярным пространством, заполненным не атмосферным воздухом, а смесью «полезного» и «вредного» воздуха.

Дыхательные бронхиолы 17-19-й генераций относят к переходной (транзиторной) зоне, в которой начинается газообмен в малочисленных альвеолах (2 % от общего числа альвеол). Альвеолярные ходы и альвеолярные мешочки, непосредственно переходящие в альвеолы, образуют альвеолярное пространство, в области которого происходит в легких газообмен 02 и С02 с кровью. Однако у здоровых людей и, особенно, у пациентов с заболеваниями легких часть альвеолярного пространства может вентилироваться, но при этом не участвовать в газообмене, поскольку эти отделы легких не перфузируются кровью. Сумму объемов таких областей легких и анатомического мертвого пространства обозначают как физиологическое мертвое пространство. Увеличение физиологического мертвого пространства в легких приводит к недостаточному снабжению тканей организма кислородом и к увеличению содержания в крови углекислого газа, что нарушает в ней газовый гомеостазис.

Анатомическим мертвым пространством называют объем проводящих воздухоносных путей (рис. 1.3 и 1.4). В норме он составляет около 150 мл, возрастая при глубоком вдохе, так как бронхи растягиваются окружающей их паренхимой лег­ких. Объем мертвого пространства зависит также от размеров тела и позы. Существует приближенное правило, согласно которому у сидящего человека он примерно равен в милли­литрах массе тела в фунтах (1 фунт ==453,6 г).

Объем анатомического мертвого пространства можно из­мерить по методу Фаулера. При этом обследуемый дышит через систему клапанов и непрерывно измеряется содержание азота с помощью быстродействующего анализатора, забираю­щего воздух из трубки, начинающейся у рта (рис. 2.6, Л). Когда после вдыхания 100% Оа человек делает выдох, содер­жание N 2 постепенно увеличивается по мере замены воздуха мертвого пространства альвеолярным. В конце выдоха реги­стрируется практически постоянная концентрация азота, что соответствует чистому альвеолярному воздуху. Этот участок кривой часто называют альвеолярным “плато”, хотя даже у здоровых людей он не совсем горизонтальный, а у больных с поражениями легких может круто идти вверх. При данном методезаписывается также объем выдыхаемого воздуха.

Для определения объема мертвого пространства строят график, связывающий содержание N 2 с выдыхаемым объемом. Затем на этом графике проводят вертикальную линию таким образом, чтобы площадь А (см. рис. 2.6,5) была равна пло­щади Б. Объем мертвого пространства соответствует точке пересечения этой линии с осью абсцисс. Фактически этот метод дает объем проводящих воздухоносных путей до “сред­ней точки” перехода от мертвого пространства к альвеоляр­ному воздуху.

Рис. 2.6. Измерение объема анатомического мертвого пространства с помощью быстродействующего анализатора N2 по методу Фаулера. А. Пос­ле вдоха из емкости с чистым кислородом обследуемый делает выдох, и концентрация N 2 в выдыхаемом воздухе вначале повышается, а потом остается почти постоянной (кривая при этом практически выходит на плато, соответствующее чистому альвеолярному воздуху). Б. Зависимость концентрации от выдыхаемого объема. Объем мертвого пространства определяется точкой пересечения оси абсцисс с вертикальной пунктирной линией, проведенной таким образом, что площади А и Б равны

Функциональное мертвое пространство

Измерить объем мертвого пространства можно также ме­тодом Бора. Из ри2с. 2.5 видно, что выдыхаемый СО 2 посту­пает из альвеолярного воздуха, а не из воздуха мертвого про­странства. Отсюда

vt х-fe==va х fa.

Поскольку

v t = v a + v d ,

v a =v t -v d ,

после подстановки получаем

V T х F E=(V T- V D)- F A,

следовательно,

Поскольку парциальное давление газа пропорционально его содержанию, запишем

(уравнение Бора),

где А и Е относятся к альвеолярному и смешанному выдыхае­мому воздуху соответственно (см. приложение). При спокой­ном дыхании отношение объема мертвого пространства к ды­хательному объему в норме равно 0,2-0,35. У здоровых людей Рсо2 в альвеолярном воздухе и артериальной крови практически одинаковы, поэтому мы можем записать урав­нение Бора следующим образом:

аср2 "СО-г ^СОг

Необходимо подчеркнуть, что методами Фаулера и Бора измеряют несколько различные показатели. Первый метод дает объем проводящих дыхательных путей вплоть до того уровня, где поступающий при вдохе воздух быстро смеши­вается с уже находившимся в легких. Этот объем зависит от геометрии быстро ветвящихся с увеличением суммарного се­чения дыхательных путей (см. рис. 1.5) и отражает строение респираторной системы. В связи с этим его называют анато­мическим мертвым пространством. По методу же Бора опре­деляется объем тех отделов легких, в которых не происходит удаление СОа из крови; поскольку этот показатель связан с работой органа, он называется функциональным (физиоло­гическим) мертвым пространством. У здоровых лиц эти объ­емы практически одинаковы. Однако у больных с пораже­ниями легких второй показатель может значительно превы­шать первый в связи с неравномерностью кровотока и вентиляции в разных отделах легких (см. гл. 5).

Минутная вентиляция -- это общее количество вновь поступившего в дыхательные пути и в легкие воздуха и вышедшего из них в течение одной минуты, что равно дыхательному объему, умноженному на частоту дыхания. В норме дыхательный объем составляет приблизительно 500 мл, а частота дыхания -- 12 раз в минуту.

Таким образом, в норме вентиляционный минутный объем в среднем составляет около 6 л. При снижении минутной вентиляции до 1,5 л и уменьшении частоты дыхания до 2--4 в 1 мин человек может жить лишь очень непродолжительное время, если только у него не разовьется сильное угнетение метаболических процессов, как это бывает при глубокой гипотермии.

Частота дыхания иногда возрастает до 40--50 дыханий в минуту, а дыхательный объем может достигать величины, близкой к жизненной емкости легких (около 4500--5000 мл у молодых здоровых мужчин). Однако при большой частоте дыхания человек обычно не может поддерживать дыхательный объем на уровне, превышающем 40 % жизненной емкости легких (ЖЕЛ), в течение нескольких минут или часов.

Альвеолярная вентиляция

Основной функцией системы легочной вентиляции является постоянное обновление воздуха в альвеолах, где он вступает в тесный контакт с кровью в легочных капиллярах. Скорость, с которой вновь поступивший воздух достигает указанной области контакта, называется альвеолярной вентиляцией. При нормальной, спокойной вентиляции дыхательный объем заполняет дыхательные пути вплоть до терминальных бронхиол, и лишь небольшая часть вдыхаемого воздуха проходит весь путь и контактирует с альвеолами. Новые порции воздуха преодолевают короткую дистанцию от терминальных бронхиол до альвеол путем диффузии. Диффузия обусловлена передвижением молекул, причем молекулы каждого газа перемещаются с большой скоростью среди других молекул. Скорость движения молекул во вдыхаемом воздухе настолько велика, а расстояние от терминальных бронхиол до альвеол столь мало, что газы преодолевают это оставшееся расстояние в считанные доли секунды.

Мертвое пространство

Обычно не менее 30 % вдыхаемого человеком воздуха никогда не достигает альвеол. Этот воздух называют воздухом мертвого пространства, так как он бесполезен для процесса газообмена. В норме мертвое пространство у молодого мужчины с дыхательным объемом в 500 мл составляет примерно 150 мл (около 1 мл на 1 фунт массы тела), или приблизительно 30 % дыхательного объема.

Объем дыхательных путей, проводящих вдыхаемый воздух до места газообмена, называется анатомическим мертвым пространством. Иногда, однако, некоторые альвеолы не функционируют из-за недостаточного притока крови к легочным капиллярам. С функциональной точки зрения эти альвеолы без капиллярной перфузии рассматриваются как патологическое мертвое пространство.

С учетом альвеолярного (патологического) мертвого пространства общее мертвое пространство называют физиологически мертвым пространством. У здорового человека анатомическое и физиологическое мертвое пространство практически одинаковы по объему, так как все альвеолы функционируют. Однако у лиц с плохо перфузируемыми альвеолами общее (или физиологическое) мертвое пространство может превышать 60 % дыхательного объема.

Анатомическим мертвым пространством называют объем проводящих воздухоносных путей. В норме он составляет около 150 мл, возрастая при глубоком вдохе, так как бронхи растягиваются окружающей их паренхимой легких. Объем мертвого пространства зависит также от размеров.тела и позы. Существует приближенное правило, согласно которому у сидящего человека он примерно равен в миллилитрах массе тела в фунтах (1 фунт — 453,6 г).

А. После вдоха из емкости с чистым кислородом обследуемый делает выдох, и концентрация N 2 в выдыхаемом воздухе вначале повышается, а потом остается почти постоянной (кривая при этом практически выходит на плато, соответствующее чистому альвеолярному воздуху). Б. Зависимость концентрации от выдыхаемого объема. Объем мертвого пространства определяется точкой пересечения оси абсцисс с вертикальной пунктирной линией, проведенной таким образом, что площади Л и Б равны.

Объем анатомического мертвого пространства можно измерить по методу Фаулера. При этом обследуемый дышит через систему клапанов и непрерывно измеряется содержание азота с помощью быстродействующего анализатора, забирающего воздух из трубки, начинающейся у рта. Когда после вдыхания 100 % O 2 человек делает выдох, содержание N 2 постепенно увеличивается по мере замены воздуха мертвого пространства альвеолярным.

В конце выдоха регистрируется практически постоянная концентрация азота, что соответствует чистому альвеолярному воздуху. Этот участок кривой часто называют альвеолярным «плато», хотя даже у здоровых людей он не совсем горизонтальный, а у больных с поражениями легких может круто идти вверх. При данном методе записывается также объем выдыхаемого воздуха.

Для определения объема мертвого пространства строят график, связывающий содержание N 2 с выдыхаемым объемом. Затем на этом графике проводят вертикальную линию таким образом, чтобы площадь А была равна площади Б. Объем мертвого пространства соответствует точке пересечения этой линии с осью абсцисс. Фактически этот метод дает объем проводящих воздухоносных путей до «средней точки» перехода от мертвого пространства к альвеолярному воздуху.

«Физиология дыхания», Дж. Уэст

В этой и следующих двух главах рассмотрено, каким образом вдыхаемый воздух поступает в альвеолы, как газы переходят через альвеолярно-капиллярный барьер и как они удаляются из легких с током крови. Эти три процесса обеспечиваются соответственно вентиляцией, диффузией и кровотоком. Приведены типичные значения объемов и расходов воздуха и крови. На практике эти величины существенно варьируют (по J….

Перед тем как перейти к динамическим показателям вентиляции, полезно коротко рассмотреть «статические» легочные объемы. Некоторые из них можно измерить с помощью спирометра. Во время выдоха колокол спирометра поднимается, а перо самописца опускается. Амплитуда колебаний, записываемых при спокойном дыхании, соответствует дыхательному объему. Если же обследуемый делает максимально глубокий вдох, а затем — как можно более глубокий…

Функциональную остаточную емкость (ФОЕ) можно измерить также с помощью общего плетизмографа. Он представляет собой крупную герметичную камеру, напоминающую кабинку телефона-автомата, с обследуемым внутри. В конце нормального выдоха с помоагью заглушки перекрывается мундштук, через который дышит обследуемый, и его просят сделать несколько дыхательных движений. При попытке вдоха газовая смесь в его легких расширяется, объем их увеличивается,…

Коэффициент вентиляции альвеол

Легочная вентиляция

Статические легочные объемы, л.

Функциональная характеристика легких и легочная вентиляция

Альвеолярная среда. Постоянство альвеолярной среды, физиологическая значимость

Легочные объемы

Легочные объемы подразделяются на статические и динамические.

Статические легочные объемы измеряют при завершенных дыхательных движениях, без лимитирования их скорости.

Динамические легочные объемы измеряют при проведении дыхательных движений с ограничением времени на их выполнение.

Объем воздуха в легких и дыхательных путях зависит от следующих показателей:

1. Антропометрических индивидуальных характеристик человека и дыхательной системы.

2. Свойств легочной ткани.

3. Поверхностного натяжения альвеол.

4. Силы, развиваемой дыхательными мышцами.

1Общая емкость- 6

2Жизненная емкость – 4,5

3Функциональная остаточная емкость -2,4

4Остаточный объем – 1,2

5Дыхательный объем- 0,5

6Объем мертвого пространства – 0,15

Легочной вентиляцией называют объем воздуха, вдыхаемого за единицу времени (минутный объем дыхания)

МОД - то количество воздуха, которое вдыхается в минуту

МОД = ДО х ЧД

До-дыхательный объем,

Чд-частота дыхания

Параметры вентиляции

Частота дыхания- 14 мин.

Минутный объем дыхания- 7л/мин

Альвеолярная вентиляция – 5л/мин

Вентиляция мертвого пространства – 2л/мин

В альвеолах к концу спокойного выдоха находится около 2500 мл воздуха (ФОЕ – функциональная остаточная емкость), во время вдоха в альвеолы поступает 350 мл воздуха, следовательно, обновляется лишь 1/7 часть альвеолярного воздуха (2500/350 = 7.1).

Для нормального процесса обмена газов в легочных альвеолах необходимо, чтобы их вентиляция воздухом находилась в определенном соотношении с перфузией их капилляров кровью т.е. минутному объему дыхания должен соответствовать соответствующий минутный объем крови, протекающий через сосуды малого круга, а этот объем, естественно, равен объему крови, протекающей через большой круг кровообращения.

В обычных условиях вентиляционно-перфузионный коэффициент у человека составляет 0,8-0,9.

Например, при альвеолярной вентиляции, равной 6 л/мин, минутный объем крови может составить около 7 л/мин.

В отдельных областях легких соотношение между вентиляцией и перфузией может быть неравномерным.

Резкие изменения этих отношений могут вести к недостаточной артериализации крови, проходящей через капилляры альвеол.

Анатомически мертвым пространством называют воздухопроводящую зону легкого, которая не участвует в газообмене (верхние дыхательные пути, трахея, бронхи, терминальные бронхиолы). АМП выполняет ряд важных функций: нагревает вдыхаемый атмосферные воздух, задерживает примерно 30% выдыхаемого тепла и воды.


Анатомически мертвое пространство соответствует воздухопроводящей зоне легких, объем которой варьирует от 100 до 200 мл., а в среднем составляет 2 мл на 1 кг. массы тела.

В здоровом легком некоторое количество апикальных альвеол вентилируются нормально, но частично либо полностью не перфузируются кровью.

Подобное физиологическое состояние обозначается как «альвеолярное мертвое пространство».

В физиологических условиях АМП может появляться в случае снижения минутного объема крови, уменьшения давления в артериальных сосудах легких, при патологических состояниях. В подобных зонах легких не происходит газообмена.

Сумма объемов анатомического и альвеолярного мертвого пространства называется физиологическим, или функциональным мертвым пространством.