Меню
Бесплатно
Главная  /  Медикаменты  /  В процессе транскрипции днк подвергается. Что такое транскрипция

В процессе транскрипции днк подвергается. Что такое транскрипция

После расшифровки генетического кода встал вопрос: каким образом осуществляется перенос информации с ДНК на белок? Биохимическими исследованиями было установлено, что основная масса ДНК в клетке локализована в ядре, тогда как синтез белка идет в цитоплазме. Это территориальное разобщение ДНК и синтеза белка обусловило поиски посредника. Поскольку синтез белка шел с участием рибосом, то на роль посредника была выдвинута РНК. Была создана схема, иллюстрирующая направление потока генетической информации в клетке:

ДНК → РНК → белок

Она получила название центральной догмы молекулярной биологии. Ф. Крик постулировал, что синтез макромолекул по этой схеме осуществляется по матричному принципу. На доказательство правильности этого постулата потребовались многие годы.

Вначале предполагалось, что роль посредника выполняет рибосомальная РНК (“один ген — одна рибосома — один белок”). Однако в скором времени выяснилась несостоятельность такого предположения. Было показано, что в процессе белкового синтеза количество рибосом не изменяется, т.е. новая РНК не синтезируется и, следовательно, новая информация не поступает. Вскоре в составе рибосом была обнаружена фракция нестабильной РНК, молекулы которой непрочно удерживаются на рибосоме с помощью катионов Mg. Методом молекулярной гибридизации было показано, что молекулы этой РНК являются копиями определенных участков ДНК. Она получила название матричной , или информационной РНК . Ее также называли раньше РНК-посредник и мессенджер-РНК. Комплементарность этих молекул определенным участкам ДНК говорила о том, что они синтезируются по матричному типу на ДНК.

Постепенно был выяснен весь путь переноса информации от ДНК к белку. Он состоит из двух этапов: транскрипции и трансляции . На этапе транскрипции происходит считывание и перенос генетической информации с ДНК на иРНК. Процесс транскрипции протекает в три стадии: инициации , элонгации и терминации . Информация считывается только с одной цепи ДНК (+ цепь), так как исходя из свойств генетического кода, комплементарные участки ДНК не могут кодировать структуру одного и того же белка из-за отсутствия комплементарной вырожденности кода. Ведет транскрипцию фермент РНК-полимераза, состоящий из четырех субъединиц (ααββ") и не обладающий специфичностью в отношении источника ДНК. На начальном этапе транскрипции — инициации — к ферменту присоединяется пятая субъединица, так называемый s-фактор, который осуществляет узнавание специфического участка ДНК, промотора. Промоторы не транскрибируются. Узнаются они s-фактором по наличию в них специфической последовательности нуклеотидов. В бактериальных промоторах она называется блоком Прибнова и имеет вид ТАТААТ (с небольшими вариациями). К промотору присоединяется фермент РНК-полимераза. Рост цепи иРНК идет в одном направлении, скорость транскрипции равняется ≈ 45-50 нуклеотидов в 1 секунду. На этапе инициации синтезируется только короткая цепочка из 8 нуклеотидов, после чего s-фактор отделяется от РНК-полимеразы и начинается этап элонгации. Наращивание цепи иРНК ведет уже белок-тетрамер. Участок, с которого считывается информация, называется транскриптоном. Он заканчивается терминатором — специфической нуклеотидной последовательностью, играющей роль stop-сигнала. Дойдя до терминатора, фермент РНК-полимераза прекращает работу и с помощью белковых факторов терминации отделяется от матрицы.

В бактериальных клетках образующиеся молекулы иРНК могут сразу выполнять роль матриц для синтеза белка, т.е. транслироваться. Они соединяются с рибосомами, к которым одновременно молекулы транспортных РНК (тРНК) доставляют аминокислоты. Цепочки транспортных РНК состоят примерно из 70 нуклеотидов. Однонитиевая молекула тРНК имеет участки комплементарного спаривания, в составе которых находятся активные центры: участок узнавания тРНК ферментом тРНК-синтетазой, присоединяющим к тРНК соответствующую активированную аминокислоту; акцептор — участок, к которому присоединяется аминокислота, и антикодоновая петля.

Антикодон — это триплет, комплементарный соответствующему кодону в молекуле иРНК. Взаимодействие кодон-антикодон идет по типу комплементарного спаривания, во время которого происходит присоединение аминокислоты к растущей белковой цепи. Инициирующим кодоном в составе разных иРНК является кодон AUG, соответствующий аминокислоте метионину. Поэтому первой к матрице подходит тРНК с антикодоном UAC, соединенная с активированной аминокислотой метионином. Ферменты, активирующие аминокислоты и соединяющие их с тРНК, называются аминоацил-тРНК-синтетазы. Все этапы биосинтеза белка (инициация, элонгация, терминация) обслуживаются белковыми факторами трансляции. У прокариот их по три на каждый этап. В конце матрицы иРНК находятся нонсенс-кодоны, которые не считываются и знаменуют собой конец трансляции.

В геноме многих организмов, от бактерий до человека, обнаружены гены и соответствующие им тРНК, осуществляющие нестандартное считывание кодонов. Это явление получило название неоднозначности трансляции .

Оно позволяет избежать негативных последствий ошибок, возникающих в структуре молекул иРНК при транскрипции. Так, при появлении внутри молекулы иРНК нонсенс-кодонов, способных преждевременно прекратить процесс транскрипции, включается механизм супрессии. Он состоит в том, что в клетке появляется необычная форма тРНК с антикодоном, комплементарным нонсенс-кодону, чего в норме быть не должно. Ее появление является результатом действия гена, осуществляющего замену основания в антикодоне тРНК, близким по составу к нонсенс-кодону. В результате такой замены нонсенс-кодон считывается как обычный значащий кодон. Подобные мутации получили название супрессорных, т.к. они подавляют изначальную мутацию, которая привела к появлению нонсенс-кодона.

Экспрессия всех генов начинается с транскрипции их нуклеотидной последовательности. Транскрипция - это процесс перевода информации, записанной на языке последовательности дезоксирибонуклеотидов в смысловой цепи ДНК на язык последовательности рибонуклеотидов в мРНК. При этом определенный участок одной из двух цепей ДНК (антисмысловой) используется как матрица для синтеза РНК путем комплементарного спаривания оснований.

Ферментами, катализирующими процесс транскрипции, служат ДНК-зависимые РНК-полимеразы. Причем у прокариот, например, в клетках кишечной палочки обнаружен лишь один тип этого фермента, который синтезирует все три типа РНК (мРНК, тРНК, рРНК). В отличие от них эукариоты имеют три разные ДНК-зависимые РНК-полимеразы, каждая из которых ответственна за транскрипцию генов, кодирующих разные типы клеточных РНК. Наилучшим образом процесс транскрипции, а также его ферментативное оснащение изучены у прокариот. Бактериальные РНК-полимеразы - это сложные белки, состоящие из нескольких разных субъединиц. Наиболее изученный фермент - холофермент РНК-полимераза E. coli, который содержит пять разных полипептидных субъединиц: две a-цепи, одну b- и одну b’-цепи, s- и w-цепи. Альтернативная форма фермента, называемая кором или миниферментом , лишена s-субъединицы. Кор-фермент катализирует большинство реакций транскрипции ДНК в РНК, однако не может инициировать синтез РНК в нужном месте, поскольку не способен узнавать промоторные сайты. Точное связывание и инициация в промоторах происходят только после добавления к кор-ферменту sd-субъединицы и образования холофермента.

Как и другие матричные процессы, транскрипция включает 3 стадии: инициацию, элонгацию и терминацию.

Инициация транскрипции . Для этого процесса необходимы: холофермент, специальная последовательность нуклеотидов в ДНК (промотор) и набор нуклеозидтрифосфатов. Транскрипция инициируется при образовании стабильного комплекса между холоферментом и специфической последовательностью, называемой промотором и располагающейся в начале всех транскрипционных единиц. Промотор - это участок молекулы ДНК, состоящий примерно из 40 пар нуклеотидов и расположенный непосредственно перед участком инициации транскрипции. В нем различают две важные и достаточно консервативные по составу последовательности. Одна из них состоит из шести или семи нуклеотидов (чаще ТАТААТ) и расположена на расстоянии примерно 10 нуклеотидов от первого транскрибируемого нуклеотида (+1); этот сигнал обычно обозначают как-10-последовательность, или Прибнов-Бокс- в честь ее первооткрывателя. В данном сайте РНК-полимераза связывается с ДНК. Вторая последовательность расположена на расстоянии ~ 35 нуклеоти-дов до сайта инициации и служит участком распознавания промотора РНК-полимеразой (рис. 3.1).


Когда РНК-полимераза связывается с промотором, происходит локальное расплетение двойной спирали ДНК и образуется открытый промоторный комплекс. В нем происходит копирование последовательности нуклеотидов смысловой, или (+)-цепи ДНК, имеющей направление 5→3’. При этом синтез мРНК всегда начинается с нуклеотидов А или G. Вторая, антисмысловая цепь ДНК, служит матрицей для синтеза цепочки РНК (рис. 3.2).

Транскрипция аналогична репликации в том смысле, что порядок присоединения рибонуклеотидов определяется комплементарным спариванием оснований (рис. 3.2). После формирования первых нескольких фосфодиэфирных связей (обычно 5- 10) d-субъединица отделяется от инициирующего комплекса, и дальнейшая транскрипция осуществляется с помощью кор-фермента.

Элонгация транскрипции . Растущая цепь РНК остается связанной с ферментом и спаренной своим растущим концом с участком матричной цепи. Остальная часть образовавшейся цепи не связана ни с ферментом, ни с ДНК. По мере продолжения транскрипции движущийся вдоль цепи ДНК корфермент действует подобно застежке «молния», расплетая двойную спираль, которая замыкается позади фермента, и восстанавливается ее исходная дуплексная структура. «Раскрытая» ферментом область ДНК простирается всего на несколько пар нуклеотидов (рис. 3.3).

Наращивание РНК идет в направлении от 5’- к 3’-концу вдоль матричной (-) цепи, ориентированной в направлении 3’→5’, т. е. антипараллельно. Транскрипция непрерывно продолжается до тех пор, пока фермент не достигнет сайта терминации транскрипции.

Терминация транскрипции . Последовательности ДНК, являющиеся сигналами остановки транскрипции, называются транскрипционными терминаторами. Они содержат инвертированные повторы, благодаря чему 3’-концы РНК-транскриптов складываются с образованием шпилек разной длины (рис. 3.4).

Обнаружены два типа сигналов терминации - r-зависимый и r- независимый терминаторы. r - это олигомерный белок, прочно связывающийся с РНК и в этом состоянии гидролизующий АТР до ADP и неорганического фосфата. В одной из моделей действие r-белка объясняется тем, что он связывается с синтезируемой цепью РНК и перемещается вдоль нее в направлении 5’→3’ к месту синтеза РНК; необходимая для его перемещения энергия выделяется при гидролизе АТР. Если r-белок наталкивается на образующуюся в РНК шпильку, он останавливает полимеразу, которая могла бы продолжить транскрипцию. Механизм r-независимой терминации изучен хуже, в нем остается много неясного.

В большинстве случаев первичные транскрипты, образующиеся описанным выше способом, не являются зрелыми молекулами РНК, а требуют процесса созревания, который называется процессингом РНК. Процессинг сильно отличается для прокариотических и эукариотических РНК.

У прокариот первичные транскрипты, сформированные при транскрипции генов, кодирующих белки, функционируют в качестве мРНК без последующей модификации или процессинга. Причем трансляция мРНК часто начинается даже до завершения синтеза 3’-конца транскрипта. Совсем иная ситуация наблюдается для молекул прокариотических рРНК и тРНК. В этом случае кластеры рРНК- или тРНК-генов часто транскрибируются с образованием единой цепи РНК. Для формирования зрелых функциональных форм должны произойти специфическое надрезание первичных РНК-транскриптов и модификация. Эти молекулярные события и называют процессингом РНК или посттранскрипционной модификацией . Начальное расщепление первичных транскриптов на фрагменты, содержащие либо тРНК, либо 16S-, 23S- , или 5S-рРНК-последовательности, осуществляет эндонуклеаза РНК-аза Ш. Ее мишенями служат короткие дуплексы РНК, образующиеся при внутримолекулярном спаривании оснований в последовательностях, фланкирующих каждый из РНК-сегментов. Эти комплементарные последовательности формируют шпильки, в составе которых РНК-аза вносит разрывы, после чего лишние последовательности спейсерных областей удаляются другими РНК-азами. Молекулы тРНК вначале синтезируются в виде про-тРНК, которая на ~ 20 % длиннее, чем зрелая. Лишние последовательности, расположенные у 5’ и 3’-концов, удаляются рибонуклеазами Q и P. Кроме этого, для образования зрелой функциональной тРНК, по-видимому, должны произойти специфическая модификация оснований и присоединение одного, двух или всех трех нуклеотидов 3’-ССА-конца (акцепторная ветвь).

Созревание РНК у эукариот осуществляется гораздо сложнее. Во-первых, у эукариот существует ядро, которое отделено от цитоплазмы ядерной мембраной. В ядре осуществляется образование первичных транскриптов, которые имеют бульшую длину, чем цитоплазматическая мРНК, участвующая в трансляции. Следовательно, образованию зрелой мРНК у эукариот должно предшествовать удаление интронов из последовательности гяРНК- транскрипта (этот процесс называется сплайсингом от англ. to splice -сплетать, сращивать). После удаления последовательностей, соответствую-щих интронам, происходит соединение участков, которые транскрибированы с экзонов . Сплайсинг катализируется комплексами белков с РНК (мяРНП), которые, взаимодействуя с гяРНК, образуют сплайсому . Полагают, что каталитической активностью в сплайсоме обладает РНК-составляющая. Такие РНК называют рибозимами . Место сплайсинга определяется в сплайсомах с высокой точностью, поскольку ошибка даже в 1 нуклеотид может привести к искажению структуры белка. Для точного узнавания в составе интронов есть специфические последовательности - сигналы.

Кроме сплайсинга, мРНК у эукариот подвергается модификации: на 5’- конце синтезируется «кэп» (шапочка) - структура, представляющая собой метилированный остаток гуанозинтрифосфата, который защищает РНК от гидролиза 5’-экзонуклеазами. На 3’-конце про-мРНК синтезируется полиаденилатная последовательность длиной 150-200 нуклеотидов, которая называется «шлейф». Эти структуры принимают участие в регуляции экспрессии эукариотических генов. Процессинг рРНК и тРНК у эукариот осуществляется аналогично таковому у прокариот.

1. Инициация - первый этап транскрипции, в ходе которого происходит связывание РНК-полимеразы с промотором и образование первой межнуклеотидной связи.

У бактерий холофермент РНК-полимераза непосредственно узнает определенные последовательности нуклеотидных пар в составе промотора: последовательность 5-ТАТААТ-3 (расположена на расстоянии 10 нуклеотидов от точки начала транскрипции и называется боксом Прибнова) и последовательность 5-ТТГАЦА-3 (удалена от точки начала транскрипции на 35 нуклеотидов). В некоторых оперонах, например в лактозном, необходимо предварительное взаимодействие с промотором дополнительного белка (САР изменяет структуру промотора, резко повышая его сродство к РНК-полимеразе).

РНК-полимеразы эукариот не способны самостоятельно связываться с промоторами транскрибируемых генов. В присоединении к транскриптонам РНК-полимераз принимают участие общие факторы транскрипции (TF). Они отличаются от σ-факторов прокариот тем, что могут связываться с ДНК независимо от РНК-полимеразы. Полимеразы I, II и III требуют присутствия разных факторов транскрипции, обозначаемых TF I, TF II и TF III соответственно. Промоторы эукариот устроены более сложно, чем прокариотические, и состоят из нескольких элементов. Из низ самым близким к точке начала транскрипции является ТАТА-домен, называемый также доменом Хогнесса. Затем следуют домены ЦААТ и ГЦ. Промоторы эукариот могут содержать различные комбинации этих элементов, но ни один из них не встречается во всех промоторах. Домен ЦААТ играет существенную роль в инициации транскрипции, ТАТА и ГЦ, по-видимому, выполняют вспомогательные функции.

Связавшись с промотором, РНК-полимераза вызывает локальную денатурацию ДНК, т. е. разделение цепей ДНК на протяжении примерно 15 нуклеотидных пар. Образуется транскрипционный «глазок». Первым в строящуюся цепь РНК включается пуриновый нуклеотид - АТФ или ГТФ, при этом все три его фосфатных остатка сохраняются. После образования первой фосфодиэфирной связи σ-фактор у бактерий теряет связь с ферментом, и оставшийся core -фермент начинает перемещаться по ДНК. РНК-полимераза эукариот после инициации транскрипции также теряет связь с транскрипционными факторами и перемещается по ДНК самостоятельно.

2. Элонгация - последовательное удлинение растущей цепи РНК. Перемещаясь вдоль двойной спирали ДНК, РНК-полимераза непрерывно раскручивает спираль впереди того участка, где происходит синтез РНК . На короткое время образуется так называемый открытый комплекс, внутри которого возникает РНК-ДНК-спираль длиной около 20 нуклеотидов
(рис. 30). Затем фермент (с помощью специального сайта) вновь закручивает


Рис. 30. Элонгация транскрипции

ДНК позади участка полимеризации. РНК-транскрипт выводится из комплекса через особый канал, свойственный РНК-полимеразе.

Скорость синтеза РНК у бактерий составляет около 30 нуклеотидов в секунду, однако она не постоянна и может несколько снижаться. Такие периоды называют паузами транскрипции.

Показано, что еще до образования гибрида РНК-ДНК РНК-полимераза переводит ДНК из В-формы в А-форму. В ней плоскости азотистых оснований не перпендикулярны оси спирали, а наклонены на 20 0 к перпендикуляру. Вероятно, это облегчает разъединение двух соседних азотистых оснований в цепи ДНК. Параметры РНК-ДНК-спирали также практически полностью идентичны характеристикам А-формы ДНК.

3. Терминация (окончание транскрипции) определяется особой нуклеотидной последовательностью ДНК, расположенной в зоне терминатора оперона.

В бактериальных оперонах выделяют два типа терминаторов:

- ρ (ро) - независимые терминаторы (I типа);

- ρ - зависимые терминаторы (II типа).

Рис. 31. ρ- независимая терминация транскрипции у бактерий

ρ-независимые терминаторы состоят из последовательностей, представляющих собой инвертированный повтор - палиндром (рис. 31), и располагаются за 16-20 нуклеотидных пар от точки терминации. Палиндромы (последовательности, которые читаются одинаково слева направо и справа налево) ρ- независимых терминаторов содержат большое количество Г-Ц-повторов. За этим участком на матричной цепи расположена олиго (А) - последовательность (4-8 адениловых нуклеотидов подряд). Транскрипция в области палиндрома приводит к тому, что в получившемся РНК-транскрипте быстро образуется устойчивый элемент вторичной структуры - «шпилька» - спирализованная область, содержащая комплементарные

Г-Ц-пары. «Шпилька» нарушает прочность связи ДНК-РНК в открытом комплексе. Кроме этого транскрипция олиго(А)-последовательности в матричной цепи ведет к образованию участка ДНК-РНК-гибрида, составленного из непрочных А-У пар, что также способствует разрушению контакта между ДНК и РНК.

ρ-зависимые терминаторы. Одним из факторов транскрипции прокариот является белок ρ . ρ -фактор - это имеющий четвертичную структуру белок, обладающий АТФ-азной активностью. Он способен связываться с 5-концом синтезируемой РНК длиной около 50 нуклеотидов. ρ -фактор движется по РНК с такой же скоростью, с которой РНК-полимераза движется по ДНК. Вследствие того что в терминаторе много Г-Ц-пар (с тремя водородными связями), РНК-полимераза в области терминатора замедляет ход, ρ -фактор ее догоняет, изменяет конформацию фермента, и синтез РНК прекращается (рис. 32).

На терминаторах обоих типов происходят три ключевых события:

Останавливается синтез РНК;

Цепь РНК освобождается от ДНК;

РНК-полимераза освобождается от ДНК.

что такое транскрипция

  1. Транскрипция - это запись звучания буквы или слова в виде последовательности специальных фонетических символов.
  2. Запись звуков
  3. Транскрипция - это запись звучания буквы или слова в виде последовательности специальных фонетических символо
  4. Это правильное произношение звуков.
    Также это символы, которые звуки и обозначают
  5. френч
  6. Неожидал, что это слово имеет столько значений; так же как, например, слово "априори".
    Транскрипция (в биологии) БСЭ
    Транскрипция в биологии, осуществляющийся в живых клетках биосинтез рибонуклеиновой кислоты (РНК) на матрице - дезоксирибонуклеиновой кислоте (ДНК) . Т. - один из фундаментальных биологических процессов, первый этап реализации генетической информации.
    Транскрипция ветхозаветных имен и географических названий Библиологический словарь
    ТРАНСКРИПЦИЯ ВЕТХОЗАВЕТНЫХ ИМЕН И ГЕОГРАФИЧЕСКИХ НАЗВАНИЙ, передача этих имен и названий в древних и новых переводах Библии с целью приблизительного сохранения звучания.
    Транскрипция Музыкальный словарь
    Транскрипция (лат. , "переписка"), собственно то же, что аранжировка пьесы для иного состава инструментов, чем она написала в оригинале; но употребляется часто также в том же смысле, как и парафраза, фантазия (наприм.
    Транскрипция (переписывание) БСЭ
    Транскрипция (от лат. transcriptio - переписывание) , письменное воспроизведение слов и текстов с учтом их произношения средствами определнной графической системы.
    Транскрипция Краткий музыкальный словарь
    ТРАНСКРИПЦИЯ - свободная виртуозная обработка произведений, написанных в оригинале для других исполнительских средств. Известны фортепианные транскрипции песен Ф. Шуберта, сделанные Ф. Листом, скрипичные транскрипции оперных отрывков.
    Транскрипция Экономический словарь
    ТРАНСКРИПЦИЯ - перенос дебетовых или кредитовых статей в торговых книгах.
    Транскрипция Словарь Ушакова
    В нашем словаре греческие и восточные слова помещены в латинской транскрипции. Международная фонетическая т. (точная передача звуков речи при помощи условного алфавита; лингв.) . Нотная т. 3. Переложение музыкального произведения для другого.. .
    Транскрипция. Естественные науки
    Транскрипция - биосинтез РНК на матрице ДНК, осуществляющийся в клетках организма. Транскрипция - первый этап реализации генетического кода, в ходе которого последовательность нуклеотидов ДНК переписывается в нуклеотидную последовательность РНК.
    Транскрипция (в музыке) БСЭ
    Транскрипция в музыке, переложение музыкального произведения (аранжировка) или его свободная виртуозная обработка (концертная Т) . Играла важную роль в становлении инструментальной музыки.
    Транскрипция Брокгауз и Ефрон
    Транскрипция, 1) лат. , письм. изображение звуков и форм известн. , языка, обладающего или не обладающего собствен. системой письма, при помощи письмен. системы.
    Транскрипция - прием перевода лексической единицы оригинала путем воссоздания ее звуковой формы с помощью букв языка перевода. Безэквивалентная лексика Приемы перевода.
    Транскрипция. Общественные науки
    Транскрипция - переложение музыкального произведения (аранжировка) или его свободная виртуозная обработка (концертная транскрипция) . Композитор, создающий транскрипцию, не строго придерживается оригинала.
    Транскрипция Издательский словарь
    ТРАНСКРИПЦИЯ, или практическая транскрипция, - передача буквами языка перевода (языка издания) , как произносится на языке оригинала непереводимое слово; напр.
    Транскрипция Джаз, рок- и поп-музыка
    Транскрипция (лат. transcriptio - переписывание) - термин, означающий переложение, переработку музыкального произведения или нотную запись музыки на слух.
    Обратная транскрипция. Естественные науки
    Обратная транскрипция - синтез ДНК на матрице РНК. При этом перенос генетической информации осуществляется от РНК к ДНК. Транскрипция.
    Оперон БСЭ
    В начале О. обычно локализован промотор инициирующий транскрипцию участок ДНК, с которым специфически связывается фермент РНК-полимераза, осуществляющая транскрипцию.
  7. Транскри#769;пция процесс синтеза РНК с использованием ДНК в качестве матрицы, происходящий во всех живых клетках.
    Транскри#769;пция (слово буквально значит переписывание, от trans- через, пере- + scribo черчу, пишу):
  8. Транскрипция (от латинского transcription- переписывание) - запись слов в полном соответствии с их звучанием.
    В русском языке не всегда написанные слова соответствуют их произношению. Чтобы показать произношение слова, используется особая запись, которая называется ТРАНСКРИПЦИЕЙ.
    В транскрипции применяются специальные знаки.
  9. транскрипция это как делать фонытический розбор слова то ко с скобками

Транскрипция — процесс синтеза РНК с использованием ДНК в качестве матрицы, что происходит во всех живых клетках, то есть, это перенос генетической информации с ДНК на РНК.

В случае ДНК, кодирующего белок, транскрипция является первым шагом биосинтеза белков, процесса, который в конечном счете приводит к переводу генетического кода, через мРНК как промежуточного звена, в полипептидную последовательность функционального белка.

Транскрипция катализируется ферментом ДНК-зависимой РНК-полимеразы. Процесс синтеза РНК протекает в направлении от 5"- к 3"конца, то есть РНК-полимераза движется матричным цепочкой ДНК в направлении 3 "-> 5".

Уровень транскрипции большинства генов четко регулююеться с помощью факторов транскрипции. Именно на этом этапе происходит большая часть регуляции экспрессии генов.

Обычно процесс транскрипции делится на 4 стадии — пре-инициацию, инициацию, элонгацию и терминацию.

Транскрипционные фабрики Транскрипция осуществляется в так называемых «транскрипционных фабриках» (Cook PR, Science 1 999 1 999 Jun 11, 284 (5421): 1790-5 The organization of replication and transcription.). 8 РНК II полимеразы составляют основу этого огромного комлекса и организуют компактизации хроматина в ядре клетки. Визуализация сайтов транскрипции возможна с помощью бромоуридину in vivo и последующей иммунодетекциею флуоресцентно замеченными антителами.

Основные процессы

Транскрипция делится на пре-инициацию, инициацию, промоторной очистки, элонгацию и терминацию. Участок ДНК, на которой происходит синтез РНК носит название — транскриптон.

Пре-инициация

В эукариот: РНК-полимераза, а следовательно и инициация транскрипции, требует наличия промоторной последовательности. Промотор — участок ДНК, запускает транскрипцию и (у эукариот) находится в 30, 75 и 90 нуклеотидных пар до точки начала транскрипции. Факторы транскрипции — белки, связывающиеся с промоторной последовательностью и способствуют началу полимеризации РНК.

Инициация

У прокариот транскрипция начинается с связывания РНК-полимеразы с промотором. Прокариотическая РНК-полимераза содержит 5 субъединиц: 2 α субъединицы, 1 β субъединицы, 1 β"субъединицы и 1 ω субъединицы — вместе эти субъединицы образуют ядро ​​фермента (core). В начале инициации энзим связан с σ-фактором, который помогает находить нужные -35 и -10 точки впереди промоторной последовательности. Сочетание РНК-полимеразы с σ-фактором носит название голофермент.

В эукариот инициация гораздо более сложный процесс. Екуриотична РНК-полимераза не распознает промотор. В свою очередь, группа белков, названных факторами транскрипции, соединяются с промотором и только после этого РНК-полимераза "садится" на цепь ДНК формируя комплекс инициации транскрипции.

В археи транскрипция происходит подобно эукариот.

Промоторной очистки

Только первый связь синтезированы, РНК-полимераза должна очистить Промотер от факторов транскрипции. В этот промежуток времени фермент синтезирует короткие ("усеченные") куски РНК. Этот процесс называется оборвана ("абортивная") инициация и он общий для прокариот и эукариот.

У прокариот, оборвана инициация продолжается пока не будет синтезирован цепь РНК с пороговой длиной в 10 нуклеотидов, после чего промотор освобождается от комплекса инициации и формируется комплекс элонгации. σ-фактор отсоединяется от РНК-полимеразы по стохастической модели. Промотор отсоединяется благодаря "скрипящему" механизма, который обеспечивает накопление необходимого количества энергии путем псевдосинтезу РНК при оборванной инициации и разрыв связей между голоферментом и белками на промоторе.

В эукариот, после нескольких циклов 10-ти нуклеотидной оборванной инициации происходит промоторной очистки, совпадает с фосфорилированием серин-5 С-концевого домена РНК-полимеразы II в. Это приводит к запуску энзима кепування мРНК (англ. MRNA-capping enzyme). Точный механизм, которым этот фермент индуцирует промоторной очистки в эукариот до сих пор не объясним.

Элонгация

Одна цепь ДНК — матричная нить (или некодирующих нить), становится матрицей для синтеза РНК. Только начинается транскрипция, РНК-полимераза перемещается матричной нитью и, используя свойство комплементарности оснований, строит на ДНК-матрице РНК копию. Хотя РНК-полимераза проходит матричной нитью от 3 "→ 5", кодирующая нити и вновь РНК также могут быть использованы в качестве опорных точек, так что транскрипция может быть описана так, будто бы происходит в направлении 5 "→ 3". Это приносит молекулу РНК точной копией кодирующего цепи (за исключением того, что тимин заменен урацилом, и нуклеотиды состоят из рибозы, тогда как в ДНК — дезоксирибоза).

Транскрипция мРНК може втягивать несколько РНК-полимеразы в едином матрице ДНК и продолжаться циклически (амплификация частей мРНК), так что с одной копии гена можно быстро синтезировать много молекул мРНК.

Элонгация также включает в себя корректирующий механизм, который может заменить неправильно включены основы. В эукариот, он может отвечать коротким паузами во время транскрипции, позволяющие связываются с новосинтезированные цепью соответствующим факторам редактирования РНК. Эти паузы могут возникать также из-за особенности действия РНК-полимеразы или через структуру хроматина.