Меню
Бесплатно
Главная  /  Болезни  /  Пересадка органов – выращивание органов для человека. Выращивание органов человека для пересадки: достижения и перспектива

Пересадка органов – выращивание органов для человека. Выращивание органов человека для пересадки: достижения и перспектива

Пообщалась с профессором Паоло Маккиарини , который вот уже 6 лет успешно занимается трансплантацией человеческих органов, выращенных из стволовых клеток пациента в лаборатории.

Что предсказывали фантасты и пророки

Последние 5 лет исследовательские лаборатории по всему миру активно занимаются выращиванием новых человеческих органов из стволовых клеток пациентов. СМИ пестрят сообщениями о созданных в лабораторных условиях ушах, хрящах, сосудах, коже и даже половых органах. Похоже, совсем скоро производство человеческих «запчастей» приобретет промышленные масштабы, и наступит предсказанная фантастами «эра постчеловека». Эра, которая поставит каждого перед дилеммой: продлить себе жизнь или умереть и остаться бессмертным в генах потомков.

Футурологи предрекали до появления «постчеловека» создание «трансчеловека». Совсем незаметно миллионы землян уже стали «транслюдьми»: это «дети из пробирок», люди с имплантами зубов и донорскими органами. Когда всё это вошло в нашу жизнь, последней цитаделью, которую должны были однажды покорить ученые, стало, пожалуй, выращивание человеческих «запчастей» в лаборатории.

Человечество всегда грезило этим. Классик научной фантастики Артур Кларк не сомневался, что ученые овладеют регенерацией в 21 веке, а его коллега Роберт Хайнлайн писал, что «тело будет чинить само себя - не заращивать раны шрамами, а воспроизводить утерянные органы ». Болгарская провидица Ванга предсказала возможность создания любых органов в 2046, назвав это достижение лучшим методом лечения. Знаменитый француз-прорицатель Нострадамус предсказал до 2015 революционные изменения в науке, в результате которых будут проводить операции с выращенными органами.

Если вы не доверяете пророкам, то вот прогноз от политиков. В 2010 британская The Daily Telegraph опубликовала доклад правительства Великобритании, посвященный профессиям, которые станут самыми востребованными в ближайшее десятилетие и к которым следует готовиться будущим участникам рынка труда. Возглавили список «производители искусственно выращенных органов», а на втором месте оказались «наномедики», которые будут заниматься научными разработками в этой сфере. В той же статье британский министр науки и инноваций Пол Дрейсон заявил, что эти профессии более не относятся к области научной фантастики.

Паоло Маккиарини в лаборатории.

Что сбылось

Мы беседуем в модном нью-йоркском ресторане Lavo. Публика, окружающая нас, и не подозревает, что мой собеседник - историческая личность, чьи научные достижения разглядел в далеком 16 веке королевский астролог Мишель де Нострадамус. Его зовут Паоло Маккиарини. Он первым в мире вырастил человеческий орган из стволовых клеток пациента в лаборатории, а затем успешно имплантировал его.

Профессор Маккиарини родился в Швейцарии в 1958, образование получал в Италии, США и Франции. Владеет пятью языками. Один из пионеров регенеративной медицины в мире. Специалист в области тканевой инженерии и стволовых клеток, он одновременно является ученым-биологом и действующим хирургом-трансплантологом. Возглавляет Центр регенеративной хирургии в шведском Каролинском институте (Комитет этого института определяет лауреатов Нобелевской премии в области физиологии и медицины).

Паоло Маккиарини - обладатель почетных научных наград, автор сотни публикаций в ведущих научных журналах мира, кавалер ордена Итальянской Республики «За заслуги в области науки», новатор и пионер в области выращивания и имплантации трахеи, созданной из стволовых клеток пациента. Этот список регалий рисует портрет недоступного и важного ученого мирового масштаба. Личное общение меняет это представление. Харизматичный и невероятно обаятельный, душа компании, красивый и элегантный, открытый и добрый. Неудивительно, что большинство отчаявшихся когда-то пациентов, которых он после прооперировал, без особых усилий нашли его через Google, введя в поисковик запросы «регенеративная медицина» или «стволовые клетки». У Маккиарини нет ассистентов и помощников - он лично отвечает на письма и ведет переговоры.

В 2008 все мировые СМИ облетела сенсационная новость. Международная группа ученых во главе с профессором Маккиарини провела первую в истории операцию по пересадке пациентке трахеи, выращенной из ее клеток на каркасе в биореакторе.

Трахея - жизненно важный орган. Эта, говоря простым языком, трубка длиной 10-13 см соединяет нос и легкие, а следовательно, обеспечивает дыхание и поступление кислорода в организм. Прежде пересадка трахеи (например, донорской) была невозможна. Так, благодаря Маккиарини, впервые пациенты с травмами, опухолями и другими нарушениями трахеи получили шанс на выздоровление.

На сегодняшний день профессор сделал около 20 операций по пересадке «выращенной» трахеи.

Маккиарини в фокусе США и России


Профессор Маккиарини с каркасом трахеи.

Достижения европейского ученого не остались не замеченными в США. Летом 2014 американская телекорпорация NBC сняла о Маккиарини 2-часовой документальный фильм «A Leap of Faith» («Прыжок веры»), в котором подробно показаны все этапы «выращивания» человеческого органа, снабженные интервью и историями всех пациентов. Создателям картины удалось передать зрителям и бешеный график профессора, который спит в самолетах, накануне трансплантации ночует возле «выращенного» органа, дает мастер-классы и делает сложнейшие операции по всему миру, а также дружит с семьями пациентов, которым, увы, его операция лишь продлила жизнь, но не смогла избавить от первоначальной необратимой болезни.

В фильме объективно затронута и обратная сторона успеха профессора, который пережил волну международной критики за экспериментальные операции на людях. Неоднократно в обществе поднимались вопросы биоэтики. В интервью авторам фильма ученый признался, что такое давление не раз приводило его к мысли бросить всё, но успешные операции возвращали веру. К тому же идею от первой имплантации разделяло почти 25 лет исследований, за которые он выработал свой девиз: «Никогда не сдаваться».

Пристально следила за «выращиванием органов» и Россия. Чтобы не упустить ученого такого калибра, российское правительство выделило в 2011 беспрецендентный грант в размере 150 млн рублей . Осваивать эти деньги Маккиарини предложили на базе Кубанского медицинского университета в Краснодаре.

16 российских специалистов профессор направил на учебу в свой родной Каролинский институт и планирует сделать из них ученых мирового класса. Самому Маккиарини грант позволил не думать о поиске спонсоров и сосредоточиться на спасении жизни пациентов, которых он уже оперирует бесплатно в Краснодаре за счет гранта. Можно сказать, что благодаря профессору Россия создает ведущую в мире лабораторию по созданию человеческих органов.

Все тот же российский грант позволил Маккиарини применить свое ноу-хау для создания уже других органов. Так, полным ходом идут успешные эксперименты по выращиванию сердца крысы, совместно с Техасским институтом сердца планируется вырастить сердце для примата. В процессе - проект по выращиванию пищевода и диафрагмы. И это - только начало новой эры в биоинженерии. В скором будущем технологии должны достичь совершенства, пройти клинические испытания и встать на поток. Тогда больные перестанут умирать, не дождавшись донора, а тем, кому пересадят выращенный из собственных клеток орган, не нужно будет принимать всю жизнь иммуноподавляющие препараты во избежание отторжения.


Фото из архива Паоло Маккиарини

Каркас трахеи “обрастает” стволовыми клетками пациента в биореакторе.

Трахею можно вырастить за 48 часов, сердце - за 3-6 недель

F : Профессор Маккиарини, то, что вы делаете, для простого обывателя звучит фантастически. Например, как вы выращиваете орган отдельно от тела человека?

Если вы думаете, что в лаборатории вырастает целая трахея, - это глубокое заблуждение. На самом деле мы берем каркас определенного органа, изготовленного по размерам пациента из нанокомпозитного материала. Затем засеиваем каркас стволовыми клетками пациента, взятыми из его же костного мозга (клетки-монуклеары) и помещаем в биореактор. В нем клетки «приживаются» (прикрепляются) к каркасу. Полученную основу мы имплантируем на место поврежденной трахеи, и именно там, в теле пациента, в течение нескольких недель формируется необходимый орган.

F : Что такое биореактор? И сколько времени занимает выращивание органа?

Биореактор - это устройство, в котором созданы оптимальные условия для роста и размножения клеток. Он обеспечивает им питание, дыхание, отводит продукты обмена веществ. В течение 48-72 часов каркас обрастает этими клетками, и «выращенная трахея» готова для пересадки больному. А вот для выращивания сердца потребуется 3-6 недель.

F : А как клетки из костного мозга вдруг «превращаются» в клетки именно трахеи после пересадки? Это и есть загадочная «самоорганизация клеток в сложные ткани»?

Основной механизм «превращения» точно еще не изучен, но есть основания полагать, что клетки костного мозга сами изменяют свой фенотип, чтобы стать, например, клетками трахеи. Это преобразование происходит благодаря местным и системным сигналам организма.

F : Бывали ли случаи, когда орган, созданный из клеток самого пациента, все равно отторгался или плохо приживался?

Так как используются собственные клетки пациента, мы ни разу не наблюдали каких-либо отторжений органа после пересадки. Тем не менее, мы зафиксировали развитие реагирующих тканей, которые связаны больше с биомеханикой нового органа, но не клетки.

F : Какие еще органы вы собираетесь выращивать в лаборатории?

В области тканевой инженерии (tissue engineering) мы сейчас работаем над выращиванием диафрагмы, пищевода, легких и сердца для мелких животных и для нечеловекообразных приматов.

F : Какие органы вырастить сложнее всего?

Самое сложное для биоинженеров - вырастить 3D-органы: сердце, печень и почки. Вернее, вырастить их можно, но трудно заставить их выполнять свои функции, вырабатывать необходимые вещества, потому что у этих органов самые сложные функции. Но уже достигнут определенный прогресс, так что рано или поздно этот тип трансплантации, как ожидается, станет реальностью.

F : Но в последнее время стволовые клетки ассоциируются со стимулированием развития рака...

Уже доказано, что местные стволовые клетки могут ускорить процесс развития опухоли, но, главное, они не вызывают рак. Если эта взаимосвязь подтвердится и в других типах опухолей, это поможет ученым разработать лекарства или факторы роста, которые, наоборот, будут атаковать или блокировать рост опухоли. В конечном счете, это может на самом деле открыть дверь к новым средствам лечения рака, которые пока не доступны.

F : Манипуляции со стволовыми клетками пациента в лаборатории до пересадки влияют на качество этих клеток?

В нашей клинической практике такого никогда не было.

F : Читала, что даже выращивание мозга входит в ваши планы. Разве это возможно со всеми нейронами?

Используя достижения в области тканевой инженерии, мы пытаемся разработать мозговое вещество, которое может быть использовано для нейрогенной регенерации в случае утраты мозгового вещества. Вырастить весь мозг, увы, невозможно.

F : Уверена, что многих интересует финансовый вопрос. Сколько стоит, например, вырастить и имплантировать трахею?

Как для меня, так и для моих пациентов спасение жизни и возможность выздоровления важнее всех денег на Земле. Однако мы имеем дело с экспериментальной хирургией, а это дорогостоящий метод лечения. Но наша команда всегда старается смягчить расходы по трансплантации для пациентов. Стоимость сильно варьируется в зависимости от страны. В Краснодаре, благодаря гранту, операция по пересадке трахеи составляет всего $15 тыс . В Италии подобные операции обходились в $80 тыс. , а первые операции в Стокгольме стоили около $ 400 тыс.

F : С внутренними органами все понятно. А есть ли возможность выращивать конечности? Возможна ли пересадка рук, ног?

Пока, к сожалению, нет. Но такие пациенты получили, помимо протезирования, новый метод успешной замены конечностей - с помощью 3D-биопринтера.

Эликсир молодости - внутри каждого из нас


Фото из архива Паоло Маккиарини.

Человеческое сердце и легкое в биореакторе (в процессе “выращивания”).

F : В одном из интервью вы сказали что ваша мечта - навсегда забыть о выращивании и трансплантации органов, заменив ее на инъекции стволовых клеток пациента из его костного мозга для регенерации поврежденных тканей организма. Через сколько лет такой метод станет доступным?

Да, это моя мечта, и мы ежедневно напряженно работаем, чтобы однажды она осуществилась. И, кстати, мы не так уж далеко от цели!

F : Может ли метод использования стволовых клеток помочь обездвиженным людям с травмами позвоночника?

На этот вопрос очень сложно ответить. Многое зависит от пациента, от степени повреждения, от размеров пораженного участка, от времени... Однако лично я считаю, что терапия стволовыми клетками имеет огромный потенциал в этой области.

F : Получается, панацея от всех болезней и эликсир молодости найдены: это - стволовые клетки костного мозга. Рано или поздно метод регенерации любых тканей этими клетками станет доступным и массовым. Что дальше? Люди получат возможность выращивать новые органы, омолаживать дряхлеющие ткани и неоднократно продлять жизнь? Есть ли предел у организма при таких манипуляциях или можно достичь бессмертия?

Думаю, мы не сможем кардинально изменить прекрасные творения природы. На этот вопрос сложно дать прямой ответ, так как в науке еще столько неизвестного. Плюс это будет вызов социальным и этическим вопросам. В будущем возможно всё, но в данный момент наша задача - спасать жизни пациентов, чей единственный шанс - регенеративная медицина.

F : Насколько велика сейчас международная конкуренция в области выращивания органов? Какие страны лидируют в этой сфере?

Если ответить коротко, лидерами станут те страны, которые уже сейчас инвестируют в регенеративную медицину.

F : Планируете ли вы сами лет через 20, например, воспользоваться новыми технологиями для омоложения своего организма?

Скорее всего, нет. Для тех, кто ищет эликсир молодости, предлагаю отбросить все медицинские и научные достижения в сторону. Лучший метод омоложения - это любовь. Любите и будьте любимыми!

Улучшение состояние здоровья человека, спасение жизни, увеличение ее продолжительности — эти вопросы были, есть и будут самыми актуальными для человечества. Именно поэтому тема выращивания искусственных органов в России в 2018 году занимает умы российских ученых, стоит на повестке дня Министерства здравоохранения и широко обсуждается в СМИ.

Дает большие надежды, что отрасль научной медицины — биоинженерные технологии, будет, наконец, иметь полноценную законодательную основу. Это позволит заниматься разработками, проводить доклинические и клинические исследования, практически использовать клеточные продукты, руководствуясь и опираясь на нормативно-правовую базу.

Закон о биомедицинских клеточных продуктах

Главная для ученых и медиков — в России с января 2017 года вступил в силу закон «О биомедицинских клеточных продуктах».

Он разработан в рамках реализации стратегии развития науки в Российской Федерации до 2025 года и направлен на регулирование отношений в связи с разработкой, исследованиями, регистрацией, производством и контролем качества, применением в лечебной практике биологических медицинских клеточных продуктов (БМКП).

Также это закон обеспечит законодательный базис для создания в сфере здравоохранения новой индустрии, которая производством и использованием клеточного продукта решит проблемы восстановления функций и структур тканей тела человека поврежденных заболеваниями, травмами, нарушениями при внутриутробном развитии.

Основной целью федерального закона является закрепление обособленного урегулирования деятельности по обращению БМКП, которая до недавнего времени была разрозненной, неполной и в основном незаконной.

Теперь организации и предприятия, которые занимались биопродуктами нелегально, парализованы. Именно поэтому принятию закона было оказано сопротивление и создавалось множество препятствий. Негативные последствия от принятия закона ощутят только те, кто осуществлял деятельность в области применения клеточного материала нелегально, то есть, нарушали закон.

Для отрасли в целом, закон обеспечивает цивилизованные пути развития, расширение возможностей, а для пациентов гарантирует получение качественного, безопасного продукта.

Новая эпоха в медицине

Вместе с поиском и разработкой эффективных методов лечения и восстановления организма человека, российская медицина ведет активную работу над созданием искусственных органов. Этой темой стали заниматься более пятидесяти лет назад, с того времени, когда методика пересадки донорских органов из теории перешла в практику.

Донорство спасло много жизней, но этот метод имеет значительный ряд проблем — нехватка донорских органов, несовместимость, отторжение иммунной системой. Поэтому идея выращивания искусственных органов с энтузиазмом была подхвачена учеными медиками всего мира.

Методика замещения поврежденных тканей искусственным клеточным продуктом, введенным извне, или путем активизирования собственных клеток основывается на жизнеспособности БМКТ и способности постоянно находиться в организме пациента. Это дает большие возможности для результативного лечения болезней и спасения многих жизней.

На сегодняшний день применение биоинженерных технологий в медицине достигло значительных результатов. Уже апробированы методики выращивания некоторых органов непосредственно в организме человека, так и вне тела. Есть возможность вырастить орган из клеток того человека, которому он впоследствии будет вживлен.

Применение искусственно созданных простых тканей уже имеют место в клинической практике. По словам Юрия Суханова, исполнительного директора Объединения экспертов по биомедицинским клеточным технологиям и регенеративной медицине, российскими учеными подготовлены к испытаниям ряд важных и необходимых продуктов.

«Это противораковые вакцины на основе живых клеток человека, препараты для лечения диабета с помощью инсулинпродуцирующих клеток, которые будут имплантироваться пациенту. Разумеется кожа – ожоги, раны, диабетическая стопа. Выращивание из клеток хряща, кожи, роговицы, уретры. И, конечно, клеточные вакцины – самое интересное и эффективное, что сейчас есть» — отметил Юрий Суханов.

Российские ученые создали искусственную печень и провели доклинические испытания продукта на животных, которые показали очень хорошие результаты. Элемент выращенного органа был имплантирован в поврежденные ткани печени животных.

В результате клетки искусственной печени способствовали регенерации тканей, и через время поврежденный орган полностью восстановился. При этом не произошло отрицательного влияния на продолжительность жизни подопытного животного.

Регенеративная медицина — это наше будущее, которое закладывается уже сегодня. Возможности у нее колоссальные. Тем более что традиционная медицина достигла определенного уровня, и сейчас не может предложить результативных методов лечения многих опасных болезней, уносящих миллионы жизней.

Медицинской науке необходима революция, мощный прорыв, которым станет приход клеточных технологий. Победить неизлечимые заболевания, снизить продолжительность и стоимость лечения, сделать доступным замену утраченного или нежизнеспособного органа и таким образом спасти и продлить жизнь — все это нам дает новая перспективная отрасль медицинской науки — тканевая инженерия.

Закон «О биомедицинских клеточных продуктах» принятый в 2017 году, начал полноценно работать. И теперь ученые имеют гораздо больше возможностей для новых исследований и открытий в области клеточных технологий и выращивания искусственных органов в России.

Ученые впервые создали химеру человека и свиньи – статья, рассказывающая об этом эксперименте, была опубликована 26 января в научном журнале Cell. Международная команда ученых под руководством Хуана Карлоса Исписуа Бельмонте, профессора Института биологических исследований Солка (США), на протяжении 28 дней выращивала в организме свиньи эмбрионы, содержащие стволовые клетки человека. Из двух тысяч гибридных зародышей 186 развились в организмы, в которых человеческая часть составляла одну на десять тысяч клеток.

Химеры – организмы, прозванные в честь монстра из греческих мифов, соединяющего в себе козу, льва и змею, – получаются в результате соединения генетического материала двух животных, но без рекомбинации ДНК (то есть обмена генетической информацией, который происходит при зачатии ребенка). В результате у химер два набора генетически разнородных клеток, но функционируют они как целый организм. В ходе эксперимента, о котором пишет Cell, ученые вынули из беременной свиноматки эмбрионы и подсадили в них индуцированные человеческие стволовые клетки, после чего эмбрионы отправили обратно развиваться в теле свиньи. Появиться на свет химерам не позволили – от них избавились еще на ранней стадии беременности самки.

Зачем ученым нужны гибридные организмы?

Ниша для органов


Одна из ⁠главных ⁠целей эксперимента – выращивание человеческих органов ⁠в организме животных. Часть пациентов ⁠годами ждет очереди на трансплантацию, и создание биологического материала ⁠таким путем могло бы спасти тысячи жизней. «Мы еще далеки от этого, но первый и важный шаг сделан», – говорит Исписуа Бельмонте. Человеческий орган, выращенный в химере из собственных клеток больного, решил бы проблему отторжения трансплантата организмом больного, так как был бы выращен из его собственных клеток.
Развить человеческие органы в теле животного ученые собираются с помощью генного редактирования (а именно инновационным способом CRISPR-Cas9). Первоначально ДНК эмбриона животного будут изменять так, чтобы в нем не развился необходимый орган, например сердце или печень. Такую «нишу» будут заполнять человеческие стволовые клетки.

Эксперименты показывают, что в химере можно создать практически любой орган – даже тот, который у подопытного животного не предусмотрен. Другой эксперимент этой же группы ученых показал, что подсадка в организм мыши стволовых крысиных клеток позволяет вырастить желчный пузырь, хотя у мышей этого органа эволюционно нет.

Еще в 2010 году японские ученые таким же образом создали для крысы поджелудочную железу. Команда Исписуа Бельмонте смогла вырастить в организме мыши также крысиное сердце и глаза. Двадцать пятого января один из его коллег сообщил в статье в журнале Nature, что его группе удалось провести обратный эксперимент – вырастить в крысе поджелудочную железу для мыши и успешно ее пересадить. Орган исправно функционировал больше года.

Важное условие для успеха экспериментов с химерами – правильное соотношение размеров соединяемых организмов. Например, ранее ученые пытались создать химеры свиней и крыс, но эксперимент оказался безуспешным. Гораздо более совместимыми являются люди, коровы и свиньи. Команда Исписуа Бельмонте предпочла использовать для создания химеры с человеком свинью просто потому, что использовать последних дешевле, чем коров.

Гибриды среди нас


История знала случаи пересадки людям некоторых частей тела от животных, в том числе и свиней, и раньше. Еще в XIX веке американский доктор Ричард Киссам успешно пересадил юноше роговицу глаза, которую взял у шестимесячного поросенка. Но полноценное создание химер началось в 1960-е годы, когда американская ученая Беатрис Минц получила лабораторным путем первый гибридный организм, соединив клетки двух разных видов мышей – белой и черной. Чуть позже другая ученая – француженка Николь ле Дуарен соединила зародышевые слои куриного и перепелиного эмбриона и в 1973 году выпустила работу о развитии гибридного организма. В 1988 году Ирвинг Вейсман из Стэнфордского университета создал мышь с человеческой иммунной системой (для исследований СПИДа), а впоследствии вживлял человеческие стволовые клетки в мышиный мозг для исследований по нейробиологии. В 2012 году на свет появились первые химеры-приматы: в Национальном центре исследования приматов в Орегоне ученые создалимакак, содержащих шесть различных ДНК.

Более того, история уже знает и случаи людей-химер, хотя общество их таковыми не называет, да и сами они могут об этом не догадываться. В 2002 году жительница Бостона Карен Киган прошла генетический тест, чтобы определить, можно ли ей пересаживать почку одного из ее родственников. Анализы показали невозможное: ДНК пациентки не соответствовала ДНК ее биологических сыновей. Оказалось, что у Киган был врожденный химеризм, который развивается у эмбриона в результате сбоя в процессе оплодотворения: ее организм содержал два генетических набора, один у клеток крови, другой – у клеток в тканях ее тела.

Формально химерой можно назвать и человека, которому пересадили чужой костный мозг, – например, при лечении лейкемии. В некоторых случаях в крови такого пациента можно найти клетки и с его исходной ДНК, и с ДНК донора. Еще один пример – так называемый микрохимеризм. В теле беременной женщины может наблюдаться перемещение стволовых клеток плода, несущих его геном, в органы будущей матери – почки, печень, легкие, сердце и даже мозг. Ученые предполагают, что это может случаться чуть ли не при каждой беременности, а такие клетки могут оставаться на новом месте в течение всей жизни женщины.

Но во всех этих случаях химеры образуются (естественно или нет) от двух человек. Другое дело – совмещение человека с животным. Трансплантация тканей от животных человеку может сделать его уязвимым для новых болезней, к чему наша иммунная система не готова. Многих также пугает возможность наделения зверей людскими качествами, вплоть до повышения уровня сознания. Ученые пытаются заверить общество и власти в том, что подобные эксперименты будут жестко контролироваться лабораториями и использоваться лишь во благо. Национальные институты здоровья США (NIH) никогда не финансировали такие разработки, ссылаясь на их неэтичность. Но в августе 2016 года представители NIH заявили, что могут пересмотреть мораторий (решение пока не принято).

В отличие от NIH американская армия щедро финансирует подобные эксперименты. По словам кардиолога из Миннесотского университета Дэниела Гэрри, его проект по созданию химер, в рамках которого была получена свинья с сердцем от другой особи, недавно получил от военных грант $1,4 млн на эксперименты по выращиванию в свинье человеческого сердца.

Исследователи преодолели барьер в создании искусственных сперматозоидов. Синтетические люди стали реальностью?

Ученые приблизились к воссозданию естественного процесса , посредством которого организм создает сперму из стволовых клеток. Исследование проводилось в рамках работы, которая в конечном итоге может обеспечить новые методы лечения бесплодия.

Выступая на ежегодной конференции Progress Education Trust в Лондоне, Азим Сурани, глава исследования, заявил, что он и его коллеги прошли значительную веху на пути к производству спермы в лабораторных условиях. Считается, что команда достигла половины пути развития стволовых клеток до незрелых клеток спермы.

Исследовании намекает, что в один прекрасный день можно будет производить сперму и яйцеклетки из стволовых клеток или из тех же клеток кожи, спасибо .

Раньше ученые использовали стволовые клетки для создания жизнеспособной мышиной спермы, которая затем использовалась для производства здорового потомства.

Мы не можем быть абсолютно уверены, что новые клетки это полноценные сперматозоиды. В лабораторных камерах есть таймеры развития, поэтому вы должны позволить им развиваться в соответствии с их внутренним временем.Азим Сурани, глава исследования.

Существуют опасения по поводу использования искусственно созданных сперматозоидов и яйцеклеток, поскольку любые генетические изъяны потенциально передаются всем будущим поколениям. Что является несущественным, при развитии и одобрении технологии .

Команда Сурани пытается тщательно отслеживать длительный путь развития, который происходит в организме. Главная проблема это сроки развития клеток. Если у мышей процесс проходит за несколько недель, с человеком – все намного сложнее.

В недавнем исследовании его команда показала, что они могут достичь примерно четырехнедельной отметки развития сперматозоида человека. Но ученые стремятся продлить это на восьминедельный этап отчетливого формирования клетки.
С этой целью команда разработала миниатюрные искусственные яйцеклетки, называемые гонадальными органоидами, которые содержат гонадальные клетки (также выращенных в лаборатории), заключенные в гель.

ДНК в зародышевых клетках должна пройти процесс, известный как «стирание». Избавление от химических меток, которые были встроены в родительскую ДНК, через воздействие окружающей среды. Большинство из этих так называемых эпигенетических маркеров очищаются сразу, после оплодотворения яйцеклетки. Это ограничивает степень влияния жизненного опыта родителей на биологию детей. Однако второй, более тщательный, сброс данных происходит, когда эмбриональные стволовые клетки превращаются в яйцеклетку или сперму.

Сейчас проблема состоит в том, чтобы выращиваемые в лаборатории сперматозоиды и яйцеклетки в точности повторяли путь развития естественных клеток организма. При удачном преодолении проблемы, искусственные клетки станут доступными для решения проблем с бесплодием, или для полноценного выращивания искусственных людей.

21/06/2017

Искусственное выращивание органов может спасти миллионы человеческих жизней. Регулярно поступающие новости из сферы регенеративной медицины звучат обнадеживающе и многообещающе. Кажется, что уже не за горами тот день, когда биоинженерные ткани и органы будут так же доступны, как запчасти к автомобилям

Успехи регенеративной медицины

Методы терапии с использованием клеточных технологий уже многие годы успешно применяют во врачебной практике. Созданы и успешно используются искусственные органы и ткани, полученные с помощью методов клеточной терапии и тканевой инженерии. К практическим достижениям в области регенеративной биомедицины относится выращивание хрящевых тканей, мочевого пузыря, уретры, сердечных клапанов, трахеи, роговицы и кожи. Удалось вырастить искусственный зуб, пока только в организме крысы, но стоматологам стоит задуматься о кардинально новых подходах. Была разработана технология восстановления гортани после операции по ее удалению и уже выполнено много таких операций. Известны случаи успешной имплантации трахеи, выращенной на донорской матрице из клеток пациента. В течение многих лет осуществляют трансплантацию искусственной роговицы.

Уже налажено серийное производство биопринтеров, которые слой за слоем печатают живые ткани и органы заданной трехмерной формы

Самыми простыми для выращивания оказались хрящевая ткань и кожа. В деле выращивания костей и хрящей на матрицах достигнут большой прогресс. Следующий уровень по сложности занимают кровеносные сосуды. На третьем уровне оказались мочевой пузырь и матка. Но эта ступень уже пройдена в 2000–2005 гг., после успешного завершения ряда операций по трансплантации искусственного мочевого пузыря и уретры. Тканевые имплантаты вагины, выращенные в лаборатории из мышечных и эпителиальных клеток пациенток, не только успешно прижились, сформировав нервы и сосуды, но и нормально функционируют уже около 10 лет.

Самыми сложными органами для биомедицины остаются сердце и почки, которые имеют сложную иннервацию и систему кровеносных сосудов. До выращивания целой искусственной печени еще далеко, однако фрагменты ткани печени человека уже получены с помощью метода выращивания на матрице из биоразлагаемых полимеров. И хотя успехи очевидны, замена таких жизненно важных органов, как сердце или печень, их выращенными аналогами - все-таки дело будущего, хотя, возможно, и не очень далекого.

Матрицы для органов

Нетканые губчатые матрицы для органов делают из биоразрушаемых полимеров молочной и гликолевой кислот, полилактона и многих других веществ. Большие перспективы и у гелеобразных матриц, в которые, кроме питательных веществ, можно вводить факторы роста и другие индукторы дифференцировки клеток в виде трехмерной мозаики, соответствующей структуре будущего органа. А когда этот орган сформируется, гель бесследно рассасывается. Для создания каркаса также используют полидиметилсилоксан, который можно заселить клетками любой ткани.

Базовая технология выращивания органов, или тканевая инженерия, заключается в использовании эмбриональных стволовых клеток для получения специализированных тканей

Следующий шаг - это выстилание внутренней поверхности полимера незрелыми клетками, которые затем образуют стенки кровеносных сосудов. Далее другие клетки желаемой ткани по мере размножения будут замещать биоразлагаемую матрицу. Перспективным считается использование донорского каркаса, определяющего форму и структуру органа. В экспериментах сердце крысы помещали в специальный раствор, с помощью которого удаляли клетки мышечной сердечной ткани, оставив другие ткани нетронутыми. Очищенный каркас засеивали новыми клетками сердечной мышцы и помещали в среду, имитирующую условия в организме. Всего через четыре дня клетки размножились настолько, что начались сокращения новой ткани, а через восемь дней реконструированное сердце уже могло качать кровь. С помощью этого же метода на донорском каркасе была выращена новая печень, которую затем пересадили в организм крысы.

Базовая технология выращивания органов

Пожалуй, нет ни одной биологической ткани, к попыткам синтезирования которой не приступила бы современная наука. Базовая технология выращивания органов, или тканевая инженерия, заключается в использовании эмбриональных стволовых клеток для получения специализированных тканей. Эти клетки затем помещают внутрь структуры соединительной межклеточной ткани, состоящей преимущественно из белка коллагена.

Матрицу из коллагена можно получить путем очистки от клеток донорской биологической ткани или создать ее искусственным путем из биоразрушаемых полимеров либо специальной керамики, если речь идет о костях. В матрицу помимо клеток вводят питательные вещества и факторы роста, после чего клетки формируют целый орган или его фрагмент. В биореакторе удалось вырастить мышечную ткань с готовой кровеносной системой.

Самыми сложными органами для биомедицины остаются сердце и почки, которые имеют сложную иннервацию и систему кровеносных сосудов

Эмбриональные стволовые клетки человека индуцировали к дифференцировке в миобласты, фибробласты и клетки эндотелия. Прорастая вдоль микротрубочек матрицы, эндотелиальные клетки сформировали русла капилляров, вошли в контакт с фибробластами и заставили их переродиться в гладкомышечную ткань. Фибробласты выделили фактор роста сосудистого эндотелия, который способствовал дальнейшему развитию кровеносных сосудов. При пересадке мышам и крысам такие мышцы приживались намного лучше, чем участки ткани, состоящие из одних мышечных волокон.

Органоиды

Используя трехмерные клеточные культуры, удалось создать простую, но вполне функциональную печень человека. В совместной культуре эндотелиальных и мезенхимальных клеток при достижении определенного соотношения начинается их самоорганизация и образуются трехмерные шарообразные структуры, представляющие собой зачаток печени. Через 48 ч после трансплантации этих фрагментов в организм мышей устанавливаются связи с кровеносными сосудами и внедренные части способны выполнять характерные для печени функции. Проведены успешные эксперименты по имплантации крысе легкого, выращенного на очищенной от клеток донорской матрице.

Воздействуя на сигнальные пути индуцированных плюрипотентных стволовых клеток, удалось получить органоиды легких человека, состоящие из эпителиальных и мезенхимальных компартментов со структурными особенностями, характерными для легочных тканей. Биоинженерные зародыши подчелюстных слюнных желез, сконструированные in vitro , после трансплантации способны развиваться в зрелую железу путем формирования гроздьевидных отростков с мышечным эпителием и иннервацией.

Разработаны 3D-органоиды глазного яблока и сетчатки глаза с фоторецепторными клетками: палочками и колбочками. Из недифференцированных эмбриональных клеток лягушки вырастили глазное яблоко и вживили его в глазную полость головастика. Через неделю после операции симптомы отторжения отсутствовали, и анализ показал, что новый глаз полностью интегрировался в нервную систему и способен передавать нервные импульсы.

А в 2000 г. опубликованы данные о создании глазных яблок, выращенных из недифференцированных эмбриональных клеток. Выращивание нервной ткани наиболее сложно из-за многообразия типов составляющих ее клеток и их сложной пространственной организации. Однако на сегодня существует успешный опыт выращивания аденогипофиза мыши из скопления стволовых клеток. Создана трехмерная культура органоидов клеток головного мозга, полученных из плюрипотентных стволовых клеток.

Напечатанные органы

Уже налажено серийное производство биопринтеров, которые слой за слоем печатают живые ткани и органы заданной трехмерной формы. Принтер способен с высокой скоростью наносить живые клетки на любую подходящую подложку, в качестве которой используют термообратимый гель. При температуре ниже 20 °С он представляет собой жидкость, а при нагреве выше 32 °С затвердевает. Причем печать осуществляется «из материала заказчика», то есть из растворов живых клеточных культур, выращенных из клеток пациента. Клетки, напыляемые принтером, через некоторое время сами срастаются. Тончайшие слои геля придают конструкции прочность, а затем гель можно легко удалить с помощью воды. Однако чтобы таким способом можно было сформировать функционирующий орган, содержащий клетки нескольких типов, необходимо преодолеть ряд сложностей. Механизм контроля, за счет которого делящиеся клетки формируют правильные структуры, еще не понятен до конца. Однако представляется, что несмотря на сложность этих задач, они все же решаемы и у нас есть все основания верить в стремительное развитие медицины нового типа.

Биобезопасность применения плюрипотентных клеток

От регенеративной медицины ждут очень многого и вместе с тем развитие этого направления порождает множество морально-этических, медицинских и нормативно-правовых вопросов. Очень важной проблемой является биобезопасность применения плюрипотентных стволовых клеток. Уже научились перепрограммировать клетки крови и кожи c помощью факторов транскрипции в индуцированные стволовые плюрипотентные клетки. Полученные культуры стволовых клеток пациента в дальнейшем могут развиваться в нейроны, ткани кожных покровов, клетки крови и печени. Следует помнить, что во взрослом здоровом организме плюрипотентных клеток нет, но они могут спонтанно возникать при саркоме и тератокарциноме. Соответственно, если ввести в организм плюрипотентные клетки или клетки с индуцированной плюрипотентностью, то они могут спровоцировать развитие злокачественных опухолей. Поэтому необходима полная уверенность в том, что в трансплантируемом пациенту биоматериале таких клеток не содержится. Сейчас разрабатываются технологии, позволяющие прямо получить клетки тканей определенного типа, минуя состояние плюрипотентности.

В XXI в. с развитием новых технологий медицина обязана перейти на качественно новый уровень, который позволит своевременно «отремонтировать» организм, пораженный тяжелой болезнью или возрастными изменениями. Хочется верить, что совсем скоро выращивать органы прямо в операционной из клеток пациента будет так же просто, как цветы в оранжереях. Надежду подкрепляет то, что технологии выращивания тканей уже работают в медицине и спасают жизни людей.