Меню
Бесплатно
Главная  /  Разное  /  Природные абиотические факторы. Экологические факторы среды. Абиотические факторы среды и их влияние на живые организмы

Природные абиотические факторы. Экологические факторы среды. Абиотические факторы среды и их влияние на живые организмы

Введение

Каждый день вы, спеша по делам, ходите по улице, ежась от холода или обливаясь потом от жары. А после рабочего дня идете в магазин, покупаете продукты питания. Выйдя из магазина, спешно останавливаете проезжающую маршрутку и бессильно опускаетесь на ближайшее свободное место. Для многих это знакомый образ жизни, не так ли? А вы никогда не задумывались о том, как протекает жизнь с точки зрения экологии? Существование человека, растений и животных возможно лишь благодаря их взаимодействию. Не обходится оно и без влияния неживой природы. У каждого из этих типов воздействия есть свое обозначение. Итак, существует всего три вида влияния на окружающую среду. Это антропогенные, биотические и абиотические факторы. Давайте рассмотрим каждый из них и его воздействие на природу.

1. Антропогенные факторы - влияние на природу всех форм деятельности человека

Когда упоминается этот термин, в голову не приходит ни одной положительной мысли. Даже когда люди делают что-нибудь хорошее для животных и растений, то происходит это из-за последствий ранее сделанного плохого (к примеру, браконьерства).

Антропогенные факторы (примеры):

  • Высушивание болот.
  • Удобрение полей пестицидами.
  • Браконьерство.
  • Промышленные отходы (фото).

Вывод

Как видите, в основном человек наносит окружающей среде только вред. И из-за увеличения хозяйственного и промышленного производства даже природоохранные меры, учреждаемые редкими добровольцами (создание заповедников, экологические митинги), уже перестают помогать.

2. Биотические факторы - влияние живой природы на разнообразные организмы

Проще говоря, это взаимодействие растений и животных между собой. Оно может быть как положительным, так и отрицательным. Существует несколько видов такого взаимодействия:

1. Конкуренция - такие взаимосвязи между особями одного или разных видов, при которых использование определенного ресурса одним из них уменьшает его доступность для других. В общем, при конкуренции животные или растения борются между собой за свой кусок хлеба

2. Мутуализм - такая взаимосвязь, при которой каждый из видов получает определенную пользу. Проще говоря, когда растения и/или животные гармонично дополняют друг друга.

3. Комменсализм - такая форма симбиоза между организмами разных видов, при которой один из них использует жилище или организм хозяина как место поселения и может питаться остатками пищи или продуктами его жизнедеятельности. При этом он не приносит хозяину ни вреда, ни пользы. В общем, маленькое незаметное дополнение.

Биотические факторы (примеры):

Сосуществование рыб и коралловых полипов, жгутиковых простейших и насекомых, деревьев и птиц (например, дятлов), скворцов-майн и носорогов.

Вывод

Несмотря на то, что биотические факторы могут приносить вред животным, растениям и человеку, от них есть и очень большая польза.

3. Абиотические факторы - воздействие неживой природы на разнообразные организмы

Да, и неживая природа тоже играет немаловажную роль в жизненных процессах животных, растений и человека. Пожалуй, самым главным абиотическим фактором является погода.

Абиотические факторы: примеры

Абиотические факторы - это температура, влажность, освещенность, соленость воды и почвы, а также воздушная среда и ее газовый состав.

Вывод

Абиотические факторы могут наносить вред животным, растениям и человеку, но все-таки в основном они приносят им пользу

Итог

Единственный фактор, не приносящий никому пользы - это антропогенный. Да, человеку он тоже не приносит ничего хорошего, хотя тот уверен, что изменяет природу для своего блага, и не задумывается, во что превратится для него и его потомков это "благо" через десяток лет. Человеком уже полностью уничтожены многие виды животных и растений, которые имели свое место в мировой экосистеме. Биосфера Земли похожа на фильм, в котором нет второстепенных ролей, все они являются главными. А вот теперь представьте, что некоторые из них убрали. Что получится в фильме? Вот так и в природе: если исчезнет самая малая песчинка, рухнет великое здание Жизни.

Выделяют следующие группы абиотических факторов (факторов неживой природы): климатические, эдафогенные (почвенные), орографические и химические.

I) Климатические факторы: к ним относятся солнечное излучение, температура, давление, ветер и некоторые другие воздействия среды.

1) Солнечное излучение является мощным экологическим фактором. Оно распространяется в пространстве в виде электромагнитных волн, из которых 48% приходится на видимую часть спектра, 45% − на инфракрасное излучение (с большой длиной волны) и около 7% − на коротковолновое ультрафиолетовое излучение. Солнечное излучение представляет собой первичный источник энергии, без которого невозможна жизнь на Земле. Но, с другой стороны, прямое воздействие солнечного света (особенно его ультрафиолетовой составляющей) губительно для живой клетки. Эволюция биосферы была направлена на снижение интенсивности ультрафиолетовой части спектра и защиты от избыточной солнечной радиации. Этому способствовало образование озона (озонового слоя) из кислорода, выделенного первыми организмами-фотосинтетиками.

Общее количество солнечной энергии, достигающей Земли, примерно постоянно. Но разные точки земной поверхности получают разное количество энергии (из-за различия во времени освещенности, разного угла падения, степени отражения, прозрачности атмосферы и т.д.)

Выявлена тесная связь между солнечной активностью и ритмом биологических процессов. Чем больше солнечная активность (больше пятен на Солнце), тем больше возмущений в атмосфере, магнитных бурь, воздействующих на живые организмы. Большую роль играет также смена солнечной активности в течение суток, обуславливающая суточные ритмы организма. У человека более 100 физиологических характеристик подчиняется суточному циклу (выделение гормонов, частота дыхания, работа различных желез и т.д.)

Солнечное излучение в большой степени определяет остальные климатические факторы.

2) Температура окружающей среды связана с интенсивностью солнечного излучения, особенно инфракрасной части спектра. Жизнедеятельность большинства организмов протекает нормально в интервале температур от +5 до 40 0 С. Выше +50 0 − +60 0 начинается необратимое разрушение белка, входящего в состав живых тканей. При высоких давлениях верхний предел температур может быть гораздо выше (до +150−200 0 С). Нижний предел температуры часто оказывается менее критическим. Некоторые живые организмы способны выдерживать очень низкие температуры (до −200 0 С) в состоянии анабиоза. Многие организмы Арктики и Антарктики постоянно живут при отрицательных температурах. У некоторых арктических рыб нормальная температура тела составляет −1,7 0 С. При этом вода в их узких капиллярах не замерзает.

Зависимость интенсивности жизнедеятельности большинства живых организмов от температуры имеет следующий вид:


Рис.12. Зависимость жизнедеятельности организмов от температуры

Как видно из рис., при повышении температуры происходит ускорение биологических процессов (скорости размножения и развития, количества потребляемой пищи). Например, развитие гусениц бабочки-капустницы при +10 0 С требует 100 суток, а при +26 0 С − всего 10 суток. Но дальнейшее увеличение температуры ведет к резкому снижению параметров жизнедеятельности и гибели организма.

В воде диапазон колебаний температур меньше, чем на суше. Поэтому водные организмы меньше приспособлены к изменениям температуры, чем наземные.

Температура часто обуславливает зональность в наземных и водных биогеоценозах.

3) Влажность окружающей среды − важный экологический фактор. Большинство живых организмов на 70−80% состоят из воды − вещества, необходимого для существования протоплазмы. Влажность местности определяется влажностью атмосферного воздуха, количеством осадков, площадью водных запасов.

Влажность воздуха зависит от температуры: чем она выше, тем обычно больше водяных содержится в воздухе. Наиболее богаты влагой нижние слои атмосферы. Осадки представляют собой результат конденсации водяных паров. В зоне умеренного климата распределение осадков по времени года более-менее равномерное, в тропиках и субтропиках − неравномерное. Доступный запас поверхностных вод зависит от подземных источников и количества осадков.

Взаимодействие температуры и влажности формирует два климата: морской и континентальный.

4) Давление − еще один климатический фактор, важный для всех живых организмов. На Земле есть области с постоянно высоким или низким давлением. Перепады давления связаны с неодинаковым нагревом земной поверхности.

5) Ветер − направленное движение воздушных масс, являющееся следствием перепада давлений. Ветровой поток направлен из зоны с большим давлением в зону с меньшим давлением. Он влияет на температурный режим, влажность и перемещение примесей в воздухе.

6) Лунные ритмы обуславливают приливы и отливы, к которым приспособлены морские животные. Они используют приливы и отливы для многих жизненных процессов: перемещения, размножения, и т.д.

II) Эдафогенные факторы определяют различные характеристики почвы. Почва играет важную роль в наземных экосистемах − роль накопителя и резерва ресурсов. На состав и свойства почв сильно влияют климат, растительность и микроорганизмы. Степные почвы более плодородны, чем лесные, так как травы недолговечны и ежегодно в почву поступает большое количество органического вещества, которое быстро разлагается. Экосистемы, не имеющие почв, обычно очень неустойчивы. Выделяют следующие основные характеристики почв: механический состав, влагоемкость, плотность и воздухопроницаемость.

Механический состав почв определяется содержанием в ней частиц различной величины. Различают четыре типа почв, в зависимости от их механического состава: песок, супесь, суглинок, глина. Механический состав прямо воздействует на растения, на подземных организмов, а через них − на другие организмы. От механического состава зависят влагоемкость (способность удерживать влагу), их плотность и воздухопроницаемость почв.

III) Орографические факторы. К ним относятся высота местности над уровнем моря, ее рельеф и расположение относительно сторон света. Орографические факторы во многом определяют климат данной местности, а также другие биотические и абиотические факторы.

IV) Химические факторы. К ним относится химический состав атмосферы (газовый состав воздуха), литосферы, гидросферы. Для живых организмов большое значение имеет содержание в окружающей среде макро- и микроэлементов.

Макроэлементы − элементы, требующиеся организму в сравнительно больших количествах. Для большинства живых организмов это фосфор, азот, калий, кальций, сера, магний.

Микроэлементы − элементы, требующиеся организму в крайне малых количествах, но входящие в состав жизненно важных ферментов. Микроэлементы необходимы для нормальной жизнедеятельности организма. Наиболее распространенные микроэлементы − металлы, кремний, бор, хлор.

Между макроэлементами и микроэлементами нет четкой границы: то, что для одних организмов − микроэлемент, для другого − макроэлемент.

Напомним еще раз, что абиотические факторы - это свойства неживой природы, которые прямо или косвенно влияют на живые организмы. На Слайде 3 приведена классификация абиотических факторов.

Температура является наиболее важным климатическим фактором. От нее зависит интенсивность обмена веществ организмов и их географическое распространение . Любой организм способен жить в пределах определенного диапазона температур. И хотя для разных видов организмов (эвритермных и стенотермных ) эти интервалы различны, для большинства из них зона оптимальных температур, при которых жизненные функции осуществляются наиболее активно и эффективно, сравнительно невелика. Диапазон температур, в которых может существовать жизнь, составляет примерно 300 С: от -200 до +100 С. Но большинство видов и большая часть их активности приурочены к еще более узкому диапазону температур. Некоторые организмы, особенно в стадии покоя, могут существовать по крайней мере некоторое время, при очень низких температурах. Отдельные виды микроорганизмов, главным образом бактерии и водоросли, способны жить и размножаться при температурах, близких к точке кипения. Верхний предел для бактерий горячих источников составляет 88 С, для сине-зеленых водорослей - 80 С, а для самых устойчивых рыб и насекомых - около 50 С. Как правило, верхние предельные значения фактора оказываются более критическими, чем нижние, хотя многие организмы вблизи верхних пределов диапазона толерантности функционируют более эффективно.

У водных животных диапазон толерантности к температуре обычно более узок по сравнению с наземными животными, так как диапазон колебаний температуры в воде меньше, чем на суше.

С точки зрения воздействия на живые организмы крайне важна изменчивость температуры. Температура, колеблющаяся от 10 до 20 С (в среднем составляющая 15 С), не обязательно действует на организм так же, как постоянная температура 15 С. Жизнедеятельность организмов, которые в природе обычно подвергаются воздействию переменных температур, подавляется полностью или частично или замедляется под действием постоянной температуры. С помощью переменной температуры удалось ускорить развитие яиц кузнечика в среднем на 38,6 % по сравнению с их развитием при постоянной температуре. Пока не ясно, обусловлен ли ускоряющий эффект самими колебаниями температуры или усиленным ростом, вызываемым кратковременным повышением температуры и не компенсирующимся замедлением роста при ее понижении.

Таким образом, температура является важным и очень часто лимитирующим фактором. Температурные ритмы в значительной степени контролируют сезонную и суточную активность растений и животных. Температура часто создает зональность и стратификацию в водных и наземных местообитаниях.

Вода физиологически необходима для любой протоплазмы. С экологической точки зрения она служит лимитирующим фактором как в наземных местообитаниях, так и в водных, где ее количество подвержено сильным колебаниям, или там, где высокая соленость способствует потере воды организмом через осмос. Все живые организмы в зависимости от потребности их в воде, а следовательно, и от различий местообитания, подразделяются на ряд экологических групп: водные или гидрофильные - постоянно живущие в воде; гигрофильные - живущие в очень влажных местообитаниях; мезофильные - отличающиеся умеренной потребностью в воде и ксерофильные - живущие в сухих местообитаниях.

Количество осадков и влажность - основные величины, измеряемые при изучении этого фактора. Количество осадков зависит в основном от путей и характера больших перемещений воздушных масс. Например, ветры, дующие с океана, оставляют большую часть влаги на обращенных к океану склонах, в результате чего за горами остается "дождевая тень", способствующая формированию пустыни. Двигаясь в глубь суши, воздух аккумулирует некоторое количество влаги, и количество осадков опять увеличивается. Пустыни, как правило, расположены за высокими горными хребтами или вдоль тех берегов, где ветры дуют из обширных внутренних сухих районов, а не с океана, например, пустыня Нами в Юго-Западной Африке. Распределение осадков по временам года - крайне важный лимитирующий фактор для организмов. Условия, создающиеся в результате равномерного распределения осадков, совершенно иные, чем при выпадении осадков в течение одного сезона. В этом случае животным и растениям приходится переносить периоды длительной засухи. Как правило, неравномерное распределение осадков по временам года встречается в тропиках и субтропиках, где нередко хорошо выражены влажный и сухой сезоны. В тропическом поясе сезонный ритм влажности регулирует сезонную активность организмов аналогично сезонному ритму тепла и света в условиях умеренного пояса. Роса может представлять собой значительный, а в местах с малым выпадением дождей и очень важный вклад в общее количество осадков.

Влажность - параметр, характеризующий содержание водяного пара в воздухе. Абсолютной влажностью называют количество водяного пара в единице объема воздуха. В связи с зависимостью количества пара, удерживаемого воздухом, от температуры и давления, введено понятие относительной влажности - это отношение пара, содержащегося в воздухе, к насыщающему пару при данных температуре и давлении. Так как в природе существуют суточный ритм влажности - повышение ночью и снижение днем, и колебание ее по вертикали и горизонтали, этот фактор наряду со светом и температурой играет важную роль в регулировании активности организмов. Влажность изменяет эффекты высоты температуры. Например, при условиях влажности, близких к критическим, температура оказывает более важное лимитирующее влияние. Аналогично влажность играет более критическую роль, если температура близка к предельным значениям. Крупные водоемы значительно смягчают климат суши, так как для воды характерна большая скрытая теплота парообразования и таяния. Фактически существуют два основных типа климата: континентальный с крайними значениями температуры и влажности и морской, которому свойственны менее резкие колебания, что объясняется смягчающим влиянием крупных водоемов.

Доступный живым организмам запас поверхностной воды зависит от количества осадков в данном районе, но эти величины не всегда совпадают. Так, пользуясь подземными источниками, куда вода поступает из других районов, животные и растения могут получать больше воды, чем от поступления ее с осадками. И наоборот, дождевая вода иногда сразу же становится недоступной для организмов.

Излучение Солнца представляет собой электромагнитные волны различной длины. Оно совершенно необходимо живой природе, так как является основным внешним источником энергии. Спектр распределения энергии излучения Солнца за пределами земной атмосферы (рис.6) показывает, что около половины солнечной энергии излучается в инфракрасной области, 40 % - в видимой и 10 % - в ультрафиолетовой и рентгеновской областях.

Надо иметь в виду то, что спектр электромагнитного излучения Солнца весьма широк (рис. 7) и его частотные диапазоны различным образом воздействуют на живое вещество. Земная атмосфера, включая озоновый слой, селективно, то есть избирательно по частотным диапазонам, поглощает энергию электромагнитного излучения Солнца и до поверхности Земли доходит в основном излучение с длиной волны от 0,3 до 3 мкм. Более длинно и коротковолновое излучение поглощается атмосферой.

С увеличением зенитного расстояния Солнца возрастает относительное содержание инфракрасного излучения (от 50 до 72 %).

Для живого вещества важны качественные признаки света - длина волны, интенсивность и продолжительность воздействия.

Известно, что животные и растения реагируют на изменение длины волны света. Цветовое зрение распространено в разных группах животных пятнисто: оно хорошо развито у некоторых видов членистоногих, рыб, птиц и млекопитающих, но у других видов тех же групп оно может отсутствовать.

Интенсивность фотосинтеза варьируется с изменением длины волны света. Например, при прохождении света через воду красная и синяя части спектра отфильтровываются и получающийся зеленоватый свет слабо поглощается хлорофиллом. Однако красные водоросли имеют дополнительные пигменты (фикоэритрины), позволяющие им использовать эту энергию и жить на большей глубине, чем зеленые водоросли.

И у наземных, и у водных растений фотосинтез связан с интенсивностью света линейной зависимостью до оптимального уровня светового насыщения, за которым во многих случаях следует снижение интенсивности фотосинтеза при высоких интенсивностях прямого солнечного света. У некоторых растений, например у эвкалипта, фотосинтез не ингибируется прямым солнечным светом. В данном случае имеет место компенсация факторов, так как отдельные растения и целые сообщества приспосабливаются к различным интенсивностям света, становясь адаптированными к тени (диатомовые, фитопланктон) или к прямому солнечному свету.

Продолжительность светового дня, или фотопериод, является "реле времени" или пусковым механизмом, включающим последовательность физиологических процессов, приводящих к росту, цветению многих растений, линьке и накоплению жира, миграции и размножению у птиц и млекопитающих и к наступлению диапаузы у насекомых. Некоторые высшие растения цветут при увеличении длины дня (растения длинного дня), другие зацветают при сокращении дня (растения короткого дня). У многих организмов, чувствительных к фотопериоду, настройку биологических часов можно изменить экспериментальным изменением фотопериода.

Ионизирующее излучение выбивает электроны из атомов и присоединяет их к другим атомам с образованием пар положительных и отрицательных ионов. Его источником служат радиоактивные вещества, содержащиеся в горных породах, кроме того, оно поступает из космоса.

Разные виды живых организмов сильно отличаются по своим способностям выдерживать большие дозы радиационного облучения. Например, доза 2 Зв (зивера) – вызывает гибель зародышей некоторых насекомых на стадии дробления, доза 5 Зв приводит к стерильности некоторых видов насекомых, доза 10 Зв абсолютно смертельна для млекопитающих. Как показывают данные большей части исследований, наиболее чувствительны к облучению быстро делящиеся клетки.

Воздействие малых доз радиации оценить сложнее, так как они могут вызвать отдаленные генетические и соматические последствия. Например, облучение сосны дозой 0,01 Зв в сутки на протяжении 10 лет вызвало замедление скорости роста, аналогичное однократной дозе 0,6 Зв. Повышение уровня излучения в среде над фоновым приводит к повышению частоты вредных мутаций.

У высших растений чувствительность к ионизирующему излучению прямо пропорциональна размеру клеточного ядра, а точнее объему хромосом или содержанию ДНК.

У высших животных не обнаружено такой простой зависимости между чувствительностью и строением клеток; для них более важное значение имеет чувствительность отдельных систем органов. Так, млекопитающие очень чувствительны даже к низким дозам радиации вследствие легкой повреждаемости облучением быстро делящейся кроветворной ткани костного мозга. Даже очень низкие уровни хронически действующего ионизирующего излучения могут вызвать в костях и в других чувствительных тканях рост опухолевых клеток, что может проявиться лишь через много лет после облучения.

Газовый состав атмосферы также является важным климатическим фактором (рис. 8). Примерно 3-3,5 млрд лет назад атмосфера содержала азот, аммиак, водород, метан и водяной пар, а свободный кислород в ней отсутствовал. Состав атмосферы в значительной степени определялся вулканическими газами. Из-за отсутствия кислорода не существовало озонового экрана, задерживающего ультрафиолетовое излучение Солнца. С течением времени за счет абиотических процессов в атмосфере планеты стал накапливаться кислород, началось формирование озонового слоя. Примерно в середине палеозоя потребление кислорода сравнялось с его образованием, в этот период содержание О2 в атмосфере было близко к современному - около 20 % . Далее, с середины девона, наблюдаются колебания в содержании кислорода. В конце палеозоя произошло заметное, примерно до 5 % современного уровня, снижение содержания кислорода и повышение содержания углекислого газа, приведшие к изменению климата и, по-видимому, послужившие толчком к обильному "автотрофному" цветению, создавшему запасы ископаемого углеводородного топлива. Затем последовало постепенное возвращение к атмосфере с низким содержанием углекислого газа и высоким содержанием кислорода, после чего отношение О2/СО2 остается в состоянии так называемого колебательного стационарного равновесия.

В настоящее время атмосфера Земли имеет следующий состав: кислород ~21 %, азот ~78 %, углекислый газ ~0,03 %, инертные газы и примеси ~0,97 % . Интересно, что концентрации кислорода и углекислого газа являются лимитирующими для многих высших растений. У многих растений удается повысить эффективность фотосинтеза, повысив концентрацию углекислого газа, однако малоизвестно, что снижение концентрации кислорода также может приводить к увеличению фотосинтеза. В опытах на бобовых и многих других растениях было показано, что понижение содержания кислорода в воздухе до 5 % повышает интенсивность фотосинтеза на 50 % . Крайне важную роль играет также азот. Это важнейший биогенный элемент, участвующий в образовании белковых структур организмов. Ветер оказывает лимитирующее воздействие на активность и распространение организмов.

Ветер способен даже изменять внешний вид растений, особенно в тех местообитаниях, например в альпийских зонах, где лимитирующее воздействие оказывают другие факторы. Экспериментально показано, что в открытых горных местообитаниях ветер лимитирует рост растений: когда построили стену, защищавшую растения от ветра, высота растений увеличилась. Большое значение имеют бури, хотя их действие сугубо локально. Ураганы и обычные ветры способны переносить животных и растения на большие расстояния и тем самым изменять состав сообществ.

Атмосферное давление , по-видимому, не является лимитирующим фактором непосредственного действия, однако оно имеет прямое отношение к погоде и климату, которые оказывают непосредственное лимитирующее воздействие.

Водные условия создают своеобразную среду обитания организмов, отличающуюся от наземной прежде всего плотностью и вязкостью. Плотность воды примерно в 800 раз, а вязкость примерно в 55 раз выше, чем у воздуха. Вместе с плотностью и вязкостью важнейшими физико-химическими свойствами водной среды являются: температурная стратификация, то есть изменение температуры по глубине водного объекта и периодические изменения температуры во времени, а также прозрачность воды, определяющая световой режим под ее поверхностью: от прозрачности зависит фотосинтез зеленых и пурпурных водорослей, фитопланктона, высших растений.

Как и в атмосфере, важную роль играет газовый состав водной среды. В водных местообитаниях количество кислорода, углекислого газа и других газов, растворенных в воде и потому доступных организмам, сильно варьируется во времени. В водоемах с высоким содержанием органических веществ кислород является лимитирующим фактором первостепенной важности. Несмотря на лучшую растворимость кислорода в воде по сравнению с азотом, даже в самом благоприятном случае в воде содержится меньше кислорода, чем в воздухе, примерно 1 % по объему. На растворимость влияют температура воды и количество растворенных солей: при понижении температуры растворимость кислорода растет, при повышении солености - снижается. Запас кислорода в воде пополняется благодаря диффузии из воздуха и фотосинтезу водных растений. Кислород диффундирует в воду очень медленно, диффузии способствует ветер и движение воды. Как уже упоминалось, важнейшим фактором, обеспечивающим фотосинтетическую продукцию кислорода, является свет, проникающий в толщу воды. Таким образом, содержание кислорода меняется в воде в зависимости от времени суток, времени года и местоположения.

Содержание углекислого газа в воде также может сильно варьироваться, но по своему поведению углекислый газ отличается от кислорода, а его экологическая роль мало изучена. Углекислый газ хорошо растворяется в воде, кроме того, в воду поступает СО2, образующийся при дыхании и разложении, а также из почвы или подземных источников. В отличие от кислорода углекислый газ вступает в реакцию с водой:

с образованием угольной кислоты, которая реагирует с известью, образуя карбонаты СО22- и гидрокарбонаты НСО3-. Эти соединения поддерживают концентрацию водородных ионов на уровне, близком к нейтральному значению. Небольшое количество углекислого газа в воде повышает интенсивность фотосинтеза и стимулирует процессы развития многих организмов. Высокая же концентрация углекислого газа является лимитирующим фактором для животных, так как она сопровождается низким содержанием кислорода. Например, при слишком высоком содержании свободного углекислого газа в воде погибают многие рыбы.

Кислотность - концентрация водородных ионов (рН) - тесно связана с карбонатной системой. Значение рН изменяется в диапазоне 0 ? рН? 14: при рН=7 среда нейтральная, при рН<7 - кислая, при рН>7 - щелочная. Если кислотность не приближается к крайним значениям, то сообщества способны компенсировать изменения этого фактора - толерантность сообщества к диапазону рН весьма значительна. Кислотность может служить индикатором скорости общего метаболизма сообщества. В водах с низким рН содержится мало биогенных элементов, поэтому продуктивность здесь крайне мала.

Соленость - содержание карбонатов, сульфатов, хлоридов и т.д. - является еще одним значимым абиотическим фактором в водных объектах. В пресных водах солей мало, из них около 80 % приходится на карбонаты. Содержание минеральных веществ в мировом океане составляет в среднем 35 г/л. Организмы открытого океана обычно стеногалинны, тогда как организмы прибрежных солоноватых вод в общем эвригалинны. Концентрация солей в жидкостях тела и тканях большинства морских организмов изотонична концентрации солей в морской воде, так что здесь не возникает проблем с осморегуляцией.

Течение не только сильно влияет на концентрацию газов и питательных веществ, но и прямо действует как лимитирующий фактор. Многие речные растения и животные морфологически и физиологически особым образом приспособлены к сохранению своего положения в потоке: у них есть вполне определенные пределы толерантности к фактору течения.

Гидростатическое давление в океане имеет большое значение. С погружением в воду на 10 м давление возрастает на 1 атм (105 Па) . В самой глубокой части океана давление достигает 1000 атм (108 Па) . Многие животные способны переносить резкие колебания давления, особенно, если у них в теле нет свободного воздуха. В противном случае возможно развитие газовой эмболии. Высокие давления, характерные для больших глубин, как правило, угнетают процессы жизнедеятельности.

Почвой называют слой вещества, лежащий поверх горных пород земной коры. Русский ученый - естествоиспытатель Василий Васильевич Докучаев в 1870 году первым рассмотрел почву как динамическую, а не инертную среду. Он доказал, что почва постоянно изменяется и развивается, а в ее активной зоне идут химические, физические и биологические процессы. Почва формируется в результате сложного взаимодействия климата, растений, животных и микроорганизмов. Советский академик почвовед Василий Робертович Вильямс дал еще одно определение почвы - это рыхлый поверхностный горизонт суши, способный производить урожай растений. Рост растений зависит от содержания необходимых питательных веществ в почве и от ее структуры.

В состав почвы входят четыре основных структурных компонента: минеральная основа (обычно 50-60 % общего состава почвы), органическое вещество (до 10 %), воздух (15-25 %) и вода (25-30 %).

Минеральный скелет почвы - это неорганический компонент, который образовался из материнской породы в результате ее выветривания.

Свыше 50 % минерального состава почвы занимает кремнезем SiO2, от 1 до 25 % приходится на глинозем Al2О3, от 1 до 10 % - на оксиды железа Fe2О3, от 0,1 до 5 % - на оксиды магния, калия, фосфора, кальция. Минеральные элементы, образующие вещество почвенного скелета, различны по размерам: от валунов и камней до песчаных крупинок - частиц диаметром 0,02-2 мм, ила - частиц диаметром 0,002-0,02 мм и мельчайших частиц глины размером менее 0,002 мм в диаметре. Их соотношение определяет механическую структуру почвы . Она имеет большое значение для сельского хозяйства. Глины и суглинки, содержащие примерно равное количество глины и песка, обычно пригодны для роста растений, так как содержат достаточно питательных веществ и способны удерживать влагу. Песчаные почвы быстрее дренируются и теряют питательные вещества из-за выщелачивания, но их выгоднее использовать для получения ранних урожаев, так как их поверхность высыхает весной быстрее, чем у глинистых почв, что приводит к лучшему прогреванию. С увеличением каменистости почвы уменьшается ее способность удерживать воду.

Органическое вещество почвы образуется при разложении мертвых организмов, их частей и экскрементов. Не полностью разложившиеся органические остатки называются подстилкой, а конечный продукт разложения - аморфное вещество, в котором уже невозможно распознать первоначальный материал, - называется гумусом. Благодаря своим физическим и химическим свойствам гумус улучшает структуру почвы и ее аэрацию, а также повышает способность удерживать воду и питательные вещества.

Одновременно с процессом гумификации жизненно важные элементы переходят их органических соединений в неорганические, например: азот - в ионы аммония NH4+, фосфор - в ортофосфатионы H2PO4-, сера - в сульфатионы SO42-. Этот процесс называется минерализацией.

Почвенный воздух так же как и почвенная вода, находится в порах между частицами почвы. Порозность возрастает от глин к суглинкам и пескам. Между почвой и атмосферой происходит свободный газообмен, в результате чего газовый состав обеих сред имеет сходный состав. Обычно в воздухе почвы из-за дыхания населяющих ее организмов несколько меньше кислорода и больше углекислого газа, чем в атмосферном воздухе. Кислород необходим для корней растений, почвенных животных и организмов-редуцентов, разлагающих органическое вещество на неорганические составляющие. Если идет процесс заболачивания, то почвенный воздух вытесняется водой и условия становятся анаэробными. Почва постепенно становится кислой, так как анаэробные организмы продолжают вырабатывать углекислый газ. Почва, если она небогата основаниями, может стать чрезвычайно кислой, а это наряду с истощением запасов кислорода неблагоприятно воздействует на почвенные микроорганизмы. Длительные анаэробные условия ведут к отмиранию растений.

Почвенные частицы удерживают вокруг себя некоторое количество воды, определяющей влажность почвы. Часть ее, называемая гравитационной водой, может свободно просачиваться в глубь почвы. Это ведет к вымыванию из почвы различных минеральных веществ, в том числе азота. Вода может также удерживаться вокруг отдельных коллоидных частиц в виде тонкой прочной связанной пленки. Эту воду называют гигроскопической. Она адсорбируется на поверхности частиц за счет водородных связей. Эта вода наименее доступна для корней растений и именно она последней удерживается в очень сухих почвах. Количество гигроскопической воды зависит от содержания в почве коллоидных частиц, поэтому в глинистых почвах ее намного больше - примерно 15 % массы почвы, чем в песчанистых - примерно 0,5 % . По мере того, как накапливаются слои воды вокруг почвенных частиц, она начинает заполнять сначала узкие поры между этими частицами, а затем распространяется во все более широкие поры. Гигроскопическая вода постепенно переходит в капиллярную, которая удерживается вокруг почвенных частиц силами поверхностного натяжения. Капиллярная вода может подниматься по узким порам и канальцам от уровня грунтовых вод. Растения легко поглощают капиллярную воду, которая играет наибольшую роль в регулярном снабжении их водой. В отличие от гигроскопической влаги эта вода легко испаряется. Тонкоструктурные почвы, например глины, удерживают больше капиллярной воды, чем грубоструктурные, такие, как пески.

Вода необходима всем почвенным организмам. Она поступает в живые клетки путем осмоса.

Вода также важна как растворитель для питательных веществ и газов, поглощаемых из водного раствора корнями растений. Она принимает участие в разрушении материнской породы, подстилающей почву, и в процессе почвообразовния.

Химические свойства почвы зависят от содержания минеральных веществ, которые находятся в ней в виде растворенных ионов. Некоторые ионы являются для растений ядом, другие - жизненно не-обходимы. Концентрация в почве ионов водорода (кислотность) рН>7, то есть в среднем близка к нейтральному значению. Флора таких почв особенно богата видами. Известковые и засоленные почвы имеют рН = 8...9, а торфяные - до 4. На этих почвах развивается специфическая растительность.

В почве обитает множество видов растительных и животных организмов, влияющих на ее физико-химические характеристики: бактерии, водоросли, грибы или простейшие одноклеточные, черви и членистоногие. Биомасса их в различных почвах равна (кг/га): бактерий 1000-7000, микроскопических грибов - 100-1000, водорослей 100-300, членистоногих - 1000, червей 350-1000.

В почве осуществляются процессы синтеза, биосинтеза, протекают различные химические реакции преобразования веществ, связанные с жизнедеятельностью бактерий. При отсутствии в почве специализированных групп бактерий их роль выполняют почвенные животные, которые переводят крупные растительные остатки в микроскопические частицы и таким образом делают органические вещества доступными для микроорганизмов.

Органические вещества вырабатываются растениями при использовании минеральных солей, солнечной энергии и воды. Таким образом, почва теряет минеральные вещества, которые растения взяли из нее. В лесах часть питательных веществ вновь возвращается в почву через листопад. Культурные растения за какой-то период времени изымают из почвы значительно больше биогенных веществ, чем возвращают в нее. Обычно потери питательных веществ восполняются внесением минеральных удобрений, которые в основном прямо не мо-гут быть использованы растениями и должны быть трансформированы микроорганизмами в биологически доступную форму. При отсутствии таких микроорганизмов почва теряет плодородие.

Основные биохимические процессы протекают в верхнем слое почвы толщиной до 40 см, так как в нем обитает наибольшее количество микроорганизмов. Одни бактерии участвуют в цикле превращения только одного элемента, другие - в циклах превращения многих элементов. Если бактерии минерализуют органическое вещество - разлагают органическое вещество на неорганические соединения, то простейшие уничтожают избыточное количество бактерий. Дождевые черви, личинки жуков, клещи разрыхляют почву и этим способствуют ее аэрации. Кроме того, они перерабатывают трудно расщепляемые органические вещества.

К абиотическим факторам среды обитания живых организмов относятся также факторы рельефа (топография) . Влияние топографии тесно связано с другими абиотическими факторами, так как она может сильно сказываться на местном климате и развитии почвы.

Главным топографическим фактором является высота над уровнем моря. С высотой снижаются средние температуры, увеличивается суточный перепад температур, возрастают количество осадков, скорость ветра и интенсивность радиации, понижаются атмосферное давление и концентрации газов. Все эти факторы влияют на растения и животных, обуславливая вертикальную зональность.

Горные цепи могут служить климатическими барьерами. Горы служат также барьерами для распространения и миграции организмов и могут играть роль лимитирующего фактора в процессах видообразования.

Еще один топографический фактор - экспозиция склона . В северном полушарии склоны, обращенные на юг, получают больше солнечного света, поэтому интенсивность света и температура здесь выше, чем на дне долин и на склонах северной экспозиции. В южном полушарии имеет место обратная ситуация.

Важным фактором рельефа является также крутизна склона . Для крутых склонов характерны быстрый дренаж и смывание почв, поэтому здесь почвы маломощные и более сухие. Если уклон превышает 35Ь, почва и растительность обычно не образуются, а создаются осыпи из рыхлого материала.

Среди абиотических факторов особого внимания заслуживает огонь или пожар . В настоящее время экологи пришли к однозначному мнению, что пожар надо рассматривать как один из естественных абиотических факторов наряду с климатическими, эдафическими и другими факторами.

Пожары как экологический фактор бывают различных типов и оставляют после себя различные последствия. Верховые или дикие пожары, то есть очень интенсивные и не поддающиеся сдерживанию, разрушают всю растительность и всю органику почвы, последствия же низовых пожаров совершенно иные. Верховые пожары оказывают лимитирующее действие на большинство организмов - биотическому сообществу приходится начинать все сначала, с того немногого, что осталось, и должно пройти много лет, пока участок снова станет продуктивным. Низовые пожары, напротив, обладают избирательным действием: для одних организмов они оказываются более лимитирующим, для других - менее лимитирующим фактором и таким образом способствуют развитию организмов с высокой толерантностью к пожарам. Кроме того, небольшие низовые пожары дополняют действие бактерий, разлагая умершие растения и ускоряя превращение минеральных элементов питания в форму, пригодную для использования новыми поколениями растений.

Если низовые пожары случаются регулярно раз в несколько лет, на земле остается мало валежника, это снижает вероятность возгорания крон. В лесах, не горевших более 60 лет, накапливается столько горючей подстилки и отмершей древесины, что при ее воспламенении верховой пожар почти неизбежен.

Растения выработали специальные адаптации к пожару, так же, как они сделали по отношению к другим абиотическим факторам. В частности, почки злаков и сосен скрыты от огня в глубине пучков листьев или хвоинок. В периодически выгорающих местообитаниях эти виды растений получают преимущества, так как огонь способствует их сохранению, избирательно содействуя их процветанию. Широколиственные же породы лишены защитных приспособлений от огня, он для них губителен.

Таким образом, пожары поддерживают устойчивость лишь некоторых экосистем. Листопадным и влажным тропическим лесам, равновесие которых складывалось без влияния огня, даже низовой пожар может причинить большой ущерб, разрушив богатый гумусом верхний горизонт почвы, приведя к эрозии и вымыванию из нее биогенных веществ.

Вопрос "жечь или не жечь" непривычен для нас. Последствия выжигания могут быть очень разными в зависимости от времени и интенсивности. По своей неосторожности человек нередко бывает причиной увеличения частоты диких пожаров, поэтому необходимо активно бороться за пожарную безопасность в лесах и зонах отдыха. Частное лицо ни в коем случае не имеет права намеренно или случайно вызывать пожар в природе. Вместе с тем необходимо знать, что использование огня специально обученными людьми является частью правильного землепользования.

Для абиотических условий справедливы все рассмотренные законы воздействия экологических факторов на живые организмы. Знание этих законов позволяет ответить на вопрос: почему в разных регионах планеты сформировались разные экосистемы? Основная причина - своеобразие абиотических условий каждого региона.

Популяции концентрируются на определенной территории и не могут быть распространены повсюду с одинаковой плотностью, поскольку имеют ограниченный диапазон толерантности по отношению к факторам окружающей среды. Следовательно, для каждого сочетания абиотических факторов характерны свои виды живых организмов. Множество вариантов сочетаний абиотических факторов и приспособленных к ним видов живых организмов обуславливают разнообразие экосистем на планете.

  • Наземно – воздушная среда жизни и ее особенности. Адаптации организмов к обитанию в наземно-воздушной среде
  • Водная среда жизни. Адаптации организмов к водной среде
  • Цель : раскрыть особенности абиотических факторов среды и рассмотреть их влияние на живые организмы.

    Задачи : познакомить учащихся с экологическими факторами среды; раскрыть особенности абиотических факторов, рассмотреть влияние температуры, света и увлажнения на живые организмы; выделить различные группы живых организмов в зависимости от влияния на них разных абиотического фактора; выполнить практическое задание по определению групп организмов, в зависимости от абиотического фактора.

    Оборудование : компьютерная презентация, задания по группам с картинками растений и животных, практическое задание.

    ХОД УРОКА

    Все живые организмы, населяющие Землю, испытывают влияние экологических факторов среды.

    Экологические факторы – это отдельные свойства или элементы среды, воздействующие прямо или косвенно на живые организмы, хотя бы на протяжении одной из стадий индивидуального развития. Экологические факторы многообразны. Существует несколько квалификаций, в зависимости от подхода. Это по влиянию на жизнедеятельность организмов, по степени изменчивости во времени, по длительности действия. Рассмотрим классификацию экологических факторов, основанную на их происхождении.

    Мы рассмотрим влияние первых трех абиотических факторов среды, так как их влияние более значительно – это температура, свет и влажность.

    Например, у майского жука личиночная стадия проходит в почве. На него влияют абиотические факторы среды: почва, воздух, косвенно влажность, химический состав почвы – совсем не влияет свет.

    Например, бактерии способны выжить в самых экстремальных условиях – их находят в гейзерах, сероводородных источниках, очень соленой воде, на глубине Мирового океана, очень глубоко в почве, во льдах Антарктиды, на самых высоких вершинах (даже Эвересте 8848 м), в телах живых организмов.

    ТЕМПЕРАТУРА

    Большинство видов растений и животных приспособлены к довольно узкому диапазону температур. Некоторые организмы, особенно в состоянии покоя или анабиоза способны выдерживать довольно низкие температуры. Колебание температуры в воде обычно меньше, чем на суше, поэтому пределы устойчивости к температуре у водных организмов хуже, чем у наземных. От температуры зависит интенсивность обмена веществ. В основном организмы живут при температуре от 0 до +50 на поверхности песка в пустыни и до – 70 в некоторых областях Восточной Сибири. Средний диапазон температур находится в пределах от +50 до –50 в наземных местообитаниях и от +2 до +27 – в Мировом океане. Например, микроорганизмы выдерживают охлаждение до –200, отдельные виды бактерий и водорослей могут жить и размножаться в горячих источниках при температуре + 80, +88.

    Различают животные организмы :

    1. с постоянной температурой тела (теплокровные);
    2. с непостоянной температурой тела (хладнокровные).

    Организмы с непостоянной температурой тела (рыбы, земноводные, пресмыкающиеся)

    В природе температура не постоянна. Организмы, которые живут в умеренных широтах и подвергаются колебанию температур, хуже переносят постоянную температуру. Резкие колебания – зной, морозы – неблагоприятны для организмов. Животные выработали приспособления для борьбы с охлаждением и перегревом. Например, с наступлением зимы растения и животные с непостоянной температурой тела впадают в состояние зимнего покоя. Интенсивность обмена веществ у них резко снижается. При подготовке к зиме в тканях животных запасается много жира, углеводов, количество воды в клетчатке уменьшается, накапливаются сахара, глицерин, препятствующий замерзанию. Так морозостойкость зимующих организмов увеличивается.

    В жаркое время года наоборот, включаются физиологические механизмы, защищающие от перегрева. У растений усиливается испарение влаги через устьица, что приводит к снижению температуры листьев. У животных усиливается испарение воды через дыхательную систему и кожу.

    Организмы с постоянной температурой тела. (птицы, млекопитающие)

    У этих организмов произошли изменения во внутреннем строении органов, что способствовало их приспособленности к постоянной температуре тела. Это, например – 4-х камерное сердце и наличие одной дуги аорты, обеспечивающие полное разделение артериального и венозного кровотока, интенсивный обмен веществ благодаря снабжению тканей артериальной кровью, насыщенной кислородом, перьевой или волосяной покров тела, способствующий сохранению тепла, хорошо развитая нервная деятельность). Все это позволило представителям птиц и млекопитающим сохранять активность при резких перепадах температур и освоить все места обитания.

    В природных условиях температура очень редко держится на уровне благоприятности для жизни. Поэтому у растений и животных возникает специальные приспособления, которые ослабляют резкие колебания температуры. У животных, например слонов большая ушная раковина, по сравнению с его предком мамонтом, живущем в холодном климате. Ушная раковина кроме органа слуха выполняет функцию терморегулятора. У растений для защиты от перегрева появляется восковой налет, плотная кутикула.

    СВЕТ

    Свет обеспечивает все жизненные процессы, протекающие на Земле. Для организмов важна длина волны воспринимаемого излучения, его продолжительность и интенсивность воздействия. Например, у растений уменьшение длины светового дня и интенсивность освещения приводит к осеннему листопаду.

    По отношению к свету растения делят на:

    1. светолюбивые – имеют мелкие листья, сильно ветвящиеся побеги, много пигмента – хлебные злаки. Но увеличение интенсивности освещения сверх оптимального подавляет фотосинтез, поэтому в тропиках трудно получать хорошие урожаи.
    2. тенелюбивы е – имеют тонкие листья, крупные, расположены горизонтально, с меньшим количеством устьиц.
    3. теневыносливые – растения способные обитать в условиях хорошего освещения, так и в условиях затенения

    Важную роль в регуляции активности живых организмов и их развитии играет продолжительность и интенсивность воздействие света – фотопериод. В умеренных широтах цикл развития животных и растений приурочен к сезонам года, и сигналом для подготовки к изменению температуры служит продолжительность светового дня, которая в отличии от других факторов всегда остается постоянной в определенном месте и в определенное время. Фотопериодизм – это пусковой механизм, включающий физиологические процессы, приводящие к росту и цветению растений весной, плодоношению летом, сбрасыванию листьев осенью у растений. У животных к накоплению жира к осени, размножению животных, их миграции, перелету птиц и наступлению стадии покоя у насекомых. (Сообщение учащихся).

    Кроме сезонных, есть еще и суточные изменения режима освещенности, смена дня и ночи определяет суточный ритм физиологической активности организмов. Важное приспособление, которое обеспечивает выживание особи – это своего рода «биологические часы», способность ощущать время.

    Животные , активность которых зависит от времени суток , бывают с дневным, ночным и сумеречным образом жизни.

    ВЛАЖНОСТЬ

    Вода – это необходимый компонент клетки, поэтому ее количество в тех или иных местах обитания является ограничивающим фактором для растений и животных и определяет характер флоры и фауны данной местности.

    Избыток влаги в почве приводит к заболачиванию почвы и появлению болотной растительности. В зависимости от влажности почвы (количество осадков) видовой состав растительности меняется. Широколиственные леса сменяются мелколиственными, затем лесостепной растительностью. Далее низкотравье, и при 250 мл в год – пустыня. Осадки в течении года могут выпадать не равномерно, живым организмам приходится переносить длительные засухи. Например, растения и животные саванн, где интенсивность растительного покрова, а так же и интенсивное питание копытных животных зависит от сезона дождей.

    В природе происходят и суточные колебания влажности воздуха, которые влияют на активность организмов. Между влажностью и температурой есть тесная связь. Температура сильнее влияет на организм при влажность высокая или низкая. У растений и животных появились приспособления к разной влажности. Например, у растений – развита мощная корневая система, утолщена кутикула листа, листовая пластинка уменьшена или превращена в иголки и колючки. У саксаула фотосинтез идет зеленой частью стебля. Рост в период засухи у растений прекращается. Кактусы запасают влагу в расширенной части стебля, иголки вместо листьев уменьшают испарение.

    У животных тоже появились приспособленности, позволяющих переносить недостаток влаги. Мелкие животные – грызуны, змеи, черепахи, членистоногие – добывают влагу из пищи. Источником воды может стать жироподобное вещество например у верблюда. В жаркое время некоторые животные – грызуны, черепахи впадают в спячку, продолжавшуюся несколько месяцев. Растения – эфемеры к началу лета, после кратковременного цветения, могут сбрасывать листья, отмирать наземные части и так переживать период засухи. При этом до следующего сезона сохраняются луковицы, корневища.

    По отношению к воде растения делят:

    1. водные растения повышенной влажности;
    2. околоводные растения, наземно-водные;
    3. наземные растения;
    4. растения сухих и очень сухих мест, обитают в местах с недостаточным увлажнениям, могут переносить непродолжительную засуху;
    5. суккуленты – сочные, накапливают воду в тканях своего тел.

    По отношению к воде животных делят:

    1. влаголюбивые животные;
    2. промежуточная группа;
    3. сухолюбивые животные.

    Виды приспособленностей организмов к колебаниям температуры, влажности и света:

    1. теплокровность поддержание организмом постоянной температуры тела;
    2. зимняя спячка – продолжительныйсон животных в зимнее время года;
    3. анабиоз – временное состояние организма, при котором жизненные процессы замедленны до минимума и отсутствуют все видимые признаки жизни (наблюдается у холоднокровных и у животных зимой и в жаркий период времени);
    4. морозостойкост ь – способность организмов переносить отрицательные температуры;
    5. состояние покоя – приспособительное свойство многолетнего растения, для которого характерно прекращение видимого роста и жизнедеятельности, отмирание наземных побегов у травянистых форм растений и опадение листьев у древесных форм;
    6. летний покой – приспособительное свойство раннецветущих растений (тюльпан, шафран) тропических районов, пустынь, полупустынь.

    (Сообщения учащихся.)

    Сделаем вывод, на все живые организмы, т.е. на растения и животные действуют абиотические факторы среды (факторы неживой природы), особенно температура, свет и увлажненность. В зависимости от влияния факторов неживой природы, растения и животных делят на различные группы и у них появляются приспособленности к влиянию этих абиотических факторов.

    Практические задания по группам: (Приложение 1)

    1. ЗАДАНИЕ: Из перечисленных животных назовите хладнокровных (т.е. с непостоянной температурой тела).

    2. ЗАДАНИЕ: Из перечисленных животных назовите теплокровных (т.е. с постоянной температурой тела).

    3. ЗАДАНИЕ: выберите из предложенных растений те, которые являются светолюбивыми, тенелюбивыми и теневыносливыми и запишите в таблицу.

    4. ЗАДАНИЕ: выберите животных, ведущих дневной, ночной и сумеречный образ жизни.

    5. ЗАДАНИЕ: выберите растения, относящиеся к разным группам по отношению к воде.

    6. ЗАДАНИЕ: выберите животных, относящихся к разным группам по отношению к воде.

    Задания по теме «абиотические факторы среды», ответы (

      АБИОТИЧЕСКИЕ ФАКТОРЫ, различные факторы, не относящиеся к живым организмам, как благоприятные, так и вредные, находящиеся в среде, окружающей живые организмы. Сюда включают, например, атмосферу, климат, геологические структуры, количество света,… … Научно-технический энциклопедический словарь

      Среды, компоненты и явления неживой, неорганической природы (климат, свет, химические элементы и вещества, температура, давление и движение среды, почва и др.), прямо или косвенно воздействующие на организмы. Экологический энциклопедический… … Экологический словарь

      абиотические факторы - abiotiniai veiksniai statusas T sritis ekologija ir aplinkotyra apibrėžtis Fiziniai (temperatūra, aplinkos slėgis, klampumas, šviesos, jonizuojančioji spinduliuotė, grunto granulometrinės savybės) ir cheminiai (atmosferos, vandens, grunto cheminė … Ekologijos terminų aiškinamasis žodynas

      Факторы неорганической природы, влияющие на живые организмы … Большой медицинский словарь

      Абиотические факторы - факторы неорганической, или неживой, среды в группе экологических факторов адаптации, действующих среди биологических видов и их сообществ, подразделяющиеся на климатические (свет, температура воздуха, воды, почвы, влажность, ветер), почвенно… … Начала современного естествознания

      АБИОТИЧЕСКИЕ ФАКТОРЫ - Факторы неорганической среды, влияющие на живые организмы. К ним относятся: состав атмосферы, морских и пресных вод, почва, климат, а также зоогигиенические условия животноводческих помещений … Термины и определения, используемые в селекции, генетике и воспроизводстве сельскохозяйственных животных

      АБИОТИЧЕСКИЕ ФАКТОРЫ - (от греч. a отрицательная приставка и biotikos жизненный, живой), факторы неорганич. среды, влияющие на живые организмы. К А. ф. относят состав атмосферы, мор. и пресных вод, почвы, климатич. характеристики (темп pa, давление и др.). Совокупность … Сельско-хозяйственный энциклопедический словарь

      абиотические факторы - (от греч. а — отрицательная приставка и biōtikós — жизненный, живой), факторы неорганической среды, влияющие на живые организмы. К А. ф. относят состав атмосферы, морских и пресных вод, почвы, климатические характеристики (температура … Сельское хозяйство. Большой энциклопедический словарь

      АБИОТИЧЕСКИЕ ФАКТОРЫ - среды, совокупность условий неорганической среды, влияющих на организм. Химические А. ф.: химический состав атмосферы, морских и пресных вод, почвы или донных отложений. Физические А. ф.: температура, свет, барометрическое давление, ветер,… … Ветеринарный энциклопедический словарь

      Среды, совокупность условий неорганической среды, влияющих на организмы. А. ф. делятся на химические (химический состав атмосферы, морских и пресных вод, почвы или донных отложений) и физические, или климатические (температура,… … Большая советская энциклопедия

    Книги

    • Экология. Учебник. Гриф МО РФ
    • Экология. Учебник. Гриф МО РФ , Потапов А.Д.. В учебнике рассмотрены основные закономерности экологии как науки о взаимодействии живых организмов со средой их жизнеобитания. Изложены главные принципы геоэкологии как науки о главных…