Меню
Бесплатно
Главная  /  Медикаменты  /  Общая управляемая гипотермия. Гипотермия Аппарат для локальной гипотермии состоит из

Общая управляемая гипотермия. Гипотермия Аппарат для локальной гипотермии состоит из

- Как и когда начались исследования в области жидкостного дыхания?

Исторически интерес возник еще в начале ХХ века. Тогда медики использовали солевой раствор, чтобы понять, насколько растяжимы легкие человека. Сегодня наполнение легких физиологическим раствором изучают студенты в курсе медицины. Но, конечно, это имеет мало отношения к жидкостному дыханию. По-настоящему все началось с 1962 года, когда Иоганн Килстра и его коллеги из Лейденского университета и голландского военно-морского флота опубликовали в журнале ASAIO (American Society of Artificial Internal Organs) Journal знаменитую статью «Мыши как рыбы» (Of mice as fish). В их эксперименте мыши, погруженные в буферный солевой раствор, дышали на протяжении 18 часов, извлекая кислород из жидкости с помощью легких. Правда, тут есть одна важная деталь. Вода при обычном атмосферном давлении и нормальной температуре способна растворить около 3% кислорода по объему, и этого хватает рыбам, но не млекопитающим, которые привыкли к содержанию кислорода около 20% (то есть парциальное давление кислорода составляет 0,2 атм). Мыши находились под давлением в восемь атмосфер, поэтому кислорода им вполне хватало (при большем давлении можно даже не полностью насыщать раствор кислородом). Правда, возврат обратно к дыханию воздухом оказался проблемой - мыши при этом гибли, но именно эта работа дала серьезный толчок научным исследованиям в этой области.

…те, кто говорит: «Дышать солевым раствором нельзя - он смывает сурфактанты!» - в общем-то, совершенно правы.

- Удалось потом установить, почему гибли животные при переходе обратно к дыханию газом?

Основная причина в том, что солевой раствор, даже насыщенный кислородом до нужного уровня под большим давлением, не подходит для долговременного дыхания млекопитающих. Через легкие раствор попадает в сосудистое русло и в кровь, что приводит к гиперволемии - избыточному объему крови и плазмы, а это увеличение нагрузки на сердечно-сосудистую и на множество других систем организма. Кроме того, солевой раствор имеет еще одно крайне неприятное действие. Наши легкие внутри состоят из огромного количества альвеол - микроскопических, в доли миллиметра, структур в форме пузырьков, насыщенных капиллярами. Альвеолы имеют огромную поверхность, и, чтобы они не слипались между собой при выдохе, их покрывает слой поверхностно-активного комплекса белков и фосфолипидов - сурфактанта. Так вот, солевой раствор этот слой смывает! В результате мало откачать солевой раствор - нужно еще восстановить слой сурфактантов и расправить легкие, это отдельные реанимационные мероприятия. Поэтому те, кто говорит: «Дышать солевым раствором нельзя - он смывает сурфактанты!» - в общем-то, совершенно правы. Но вот только в нашей системе жидкостного дыхания солевой раствор не используется.

- А как вы сами занялись жидкостным дыханием?

Я узнал об этом направлении в 1960-х, когда моему отцу, офицеру ВМФ и сотруднику НИИ ВМФ (где в том числе занимались и вопросами подводного флота), предложили дать рецензию на эту идею. Тема была одобрена, и позднее в новосибирском Академгородке я видел мышей, которые дышали солевым раствором. А в 1966 году появилась еще одна историческая статья - «Выживание млекопитающих, дышащих органической жидкостью, насыщенной кислородом при атмосферном давлении» (Survival of Mammals Breathing Organic Liquids Equilibrated with Oxygen at Atmospheric Pressure). В статье американский биохимик и врач Лиланд Кларк показал, что млекопитающие - мыши и кошки - способны длительное время дышать фторуглеродными жидкостями при атмосферном давлении. Можно сказать, что эта статья положила начало всем современным исследованиям, в которых для жидкостного дыхания используются перфторуглероды - углеводороды, в которых все атомы водорода замещены на атомы фтора. Некоторые из таких соединений обладают очень важным свойством - они имеют аномально высокую способность растворять газы, такие как кислород и диоксид углерода. А это как раз одно из основных свойств, которые необходимы для реализации жидкостного дыхания.

То есть при использовании перфторуглеродов проблем с жидкостным дыханием и с возвращением к газовому дыханию нет?

Конечно же есть. Тот же Кларк экспериментировал с силиконовым маслом, которое также растворяет кислород и углекислый газ, но все такие мыши и кошки погибли после возвращения к газовому дыханию. А вот те, которые дышали перфторуглеродом, выживали, хотя и с различными повреждениями легких и осложнениями типа пневмонии. С перфторуглеродами есть свои проблемы. Одна из них - это примеси, которые как раз могут быть причиной многих крайне неприятных эффектов. Другие - это высокие (по сравнению с газами) плотность и вязкость, которые могут затруднять процесс самостоятельного дыхания - все же легкие не рассчитаны на подобную долговременную нагрузку. В первых экспериментах вообще считалось, что самостоятельное дыхание животных больше 20-30 минут невозможно и требуется искусственная механическая вентиляция, то есть жидкость требуется прокачивать сквозь легкие каким-то насосом. Я с этим не вполне согласен, но это, конечно, зависит от контекста: в некоторых ситуациях действительно требуется искусственная вентиляция легких, а в других все же возможно самостоятельное дыхание.

- Например, в каких?

Например, в спасательных аппаратах для подводников. Спасение с глубины сотен метров длится 15-20 минут, это время человек может дышать самостоятельно. Стимулом к началу этих работ стал инцидент с подводной лодкой К-429, которая затонула в 1983 году на Дальнем Востоке. Погибло 16 подводников, и результатом этого стало повышенное внимание ЦК и поручение ученым разработать методы спасения подводников при авариях подлодок. Я в это время уже работал в 40-м НИИ аварийно-спасательного дела, водолазных и глубоководных работ МО СССР в Ломоносове, где занимался перфторуглеродами в качестве кровезаменителей (сейчас из таких соединений наиболее известен «Перфторан», разработанный в Институте биофизики АН СССР) для борьбы с декомпрессионной болезнью. Эти препараты представляют собой эмульсию 10-20% перфторуглеродов в солевом растворе и повышают газотранспортные функции крови. Но прогресс был очень небольшой: сколько бы мы ни переливали перфторуглероды в кровь, как бы они хорошо ни растворяли пузырьки газов, они не могли существенно решить проблему. Поэтому была предложена альтернатива полностью избежать декомпрессионной болезни, используя жидкостное дыхание - перфторуглероды способны растворять кислород в 20 раз лучше, чем вода (до 50% по объему). Это означает, что даже при нормальном давлении теоретически уже можно дышать.

В 40-м НИИ у нас была собака, прожившая после погружения более 10 лет.

- Но ведь кроме кислорода нужно еще выводить углекислый газ?

В перфторуглеродах углекислый газ растворяется еще лучше, чем кислород, - 150-200%. Так что остается только его связать. Это можно сделать с помощью химических веществ типа щелочей (или некоторых других), как это реализовано в дыхательных аппаратах с замкнутым циклом дыхания. Так что эта проблема, в общем-то, чисто технической реализации.

- Так в 1980-х в итоге появилась идея системы жидкостного дыхания?

Ну это примерно как сказать в 1960-х про пилотируемую космическую программу: «Так Гагарин полетел в космос». Я был инициатором работ по жидкостному дыханию, ну, а поскольку инициатива, как известно, наказуема, мне пришлось стать и исполнителем. Когда мы стали экспериментировать с собаками, оказалось, что они самостоятельно способны дышать до получаса, но не дольше (за рубежом были примерно такие же результаты). Оказалось, что мы еще недостаточно хорошо представляли себе процесс дыхания. По тем теориям дыхания, которые существовали в то время, с учетом мощности дыхательных мышц и их утомляемости получалось, что длительное жидкостное дыхание невозможно. Но к этому времени появился принцип высокочастотной вентиляции легких, то есть небольшие объемы с высокой частотой - не единицы или десятки вдохов-выдохов в минуту, а сотни. Этот принцип, кстати, тоже противоречил теориям, но работал! При этом высокочастотная вентиляция требует гораздо меньших усилий, но даже с помощью очень небольшого дыхательного объема все же может обеспечить необходимый газообмен. Наши представления и наши знания о дыхании были несовершенны, и гидродинамические модели и расчеты жидкостного дыхания не соответствовали тому, что я видел в опытах на животных. Кроме того, мы предприняли серьезные усилия по дополнительной очистке жидкости (это был в основном перфтордекалин), и таким методом удалось достичь весьма значительных результатов: собаки дышали самостоятельно, успешно выживали после возврата к газовому дыханию, некоторые жили после этого долгие годы (в 40-м НИИ у нас была собака, прожившая после погружения более 10 лет) и давали здоровое потомство. Если придерживаться нашей методики, собаки выживают и живут после этого долго и ничем не отличаются от других собак. Разве что только тем, что к ним проявляют повышенное внимание.

- А как же смывание сурфактанта и расправление легких?

Еще раз подчеркну: для жидкостного дыхания мы использовали не солевой раствор и даже не «Перфторан», который представляет собой эмульсию и благодаря наличию эмульгатора еще лучше смывает сурфактант. Для дыхания мы использовали перфторуглероды, которые не взаимодействуют с сурфактантами, не растворяют их и не смывают. Поэтому специальных реанимационных мероприятий по расправлению легких не требовалось.

- Как же выглядит система жидкостного дыхания в вашем варианте?

Ну вот представим себе подлодку на грунте на глубине 600 метров. Если спасение происходит самым современным на сегодняшний день, но обычным методом, то есть быстрая компрессия в спасательном люке и потом выход и всплытие «на выдохе», то примерно половина подводников погибает от декомпрессионной болезни. И каждая минута на поверхности до помещения в барокамеру увеличивает эту вероятность. Метод жидкостного дыхания предусматривает другой алгоритм действий. Подводник должен быть хорошо обучен, и физически, и психологически готов к нему. Итак, подготовленный человек заходит в спасательный люк. На нем резиновый раздувающийся гидрокомбинезон, который способен сверху создать достаточно большой объем, - баллон, который сможет его вытащить на поверхность (это, кстати, проблема: чем глубже, тем большее нужно давление, чтобы его надуть). Включение в аппарат начинается с того, что нам нужно подавить кашель, - ингаляционным способом вводится специальное вещество в дозе, необходимой для конкретного человека. Это может быть внешний ингалятор или встроенный в аппарат. Человек всего лишь должен не кашлять, не должно быть смыкания голосовой щели (есть еще один, более сложный вариант - с постановкой ингаляционной трубки). Человек должен быть в этот момент спокоен, не должен паниковать. После этого начинаем заливать фторуглеродную жидкость, насыщенную кислородом, и после того, как легкие заполнятся, делаем компрессию - заливаем отсек водой и выравниваем давление. Потом открываем внешний люк и баллон тянет человека наверх. При таком всплытии изменения объема легких не происходит и насыщения тканей организма азотом тоже, то есть вообще нет никакой декомпрессионной болезни. Там, конечно, есть много проблем. Например, переохлаждение и дыхание холодной жидкостью (хотя в аппарате предусмотрен подогрев) могут привести к пневмонии. Но дело в том, что на поверхности мы умеем лечить пневмонию, а вот если подводник останется на дне, мы ничем не сможем ему помочь.

Сейчас мы подошли к тому, чтобы перейти к экспериментам на человеке. Техника за 30 лет ушла далеко вперед.

Сейчас мы подошли к тому, чтобы перейти к экспериментам на человеке. Техника за 30 лет ушла далеко вперед, появилось большое количество технологий, которые сильно облегчают исследования, - скажем, малогабаритные и очень информативные системы мониторинга различных медицинских показателей. С их помощью можно очень много узнать о жидкостном дыхании человека, достаточно быстро довести систему до рабочей эксплуатации - и спасти множество жизней, и сильно продвинуть науку.

- Существуют ли для жидкостного дыхания принципиальные ограничения на глубину?

Изначально нам поставили задачу спасения с глубины 350 м, обеспечив дыхание на протяжении 15 минут. Это достаточно реальная задача, сильно повышающая шансы выжить для терпящих бедствие подводников. В итоге мы «погружали» собак в барокамере до 700 м и успешно «спасали» их, вдвое превысив заданную глубину. А в 2015 году мы провели морские испытания системы на собаках на Черном море, правда, на небольшой глубине в 15 м, но зато в совершенно реальной обстановке (собака нормально дышала головой вниз и на глубине, и потом на поверхности, хотя и сильно переохладилась за время жидкостного дыхания).

Джеймс Кэмерон в фильме «Бездна» 1989 года показал глубоководный скафандр с системой жидкостного дыхания, но, как вы понимаете, он это не сам придумал: к этому времени у нас собаки «погружались» в барокамерах и дышали самостоятельно. За рубежом, кстати, такого делать в то время не умели - только с искусственной вентиляцией легких. А в фильме главный герой дышит самостоятельно!

Для использования такой системы в качестве глубоководного рабочего скафандра нужно решить много технических проблем, в частности с запасом кислорода, с подогревом, с сервопомощью дыханию, а также неприятными эффектами типа нервного синдрома высоких давлений (НСВД) - помните, в фильме Кэмерона у главного отрицательного героя был тремор и нервный срыв? Но на самом деле НСВД, возможно, связан именно с дыханием газами, а не воздействием давления. В зарубежных экспериментах мыши погружались на глубину более 2 км, и никакого НСВД у них не наблюдалось. В любом случае, эта область науки пока недостаточно изучена, чтобы можно было делать выводы, но я лично считаю, что мы сможем противодействовать НСВД тем или иным образом (скажем, введением каких-либо лекарственных препаратов или небольшого количества газов типа азота в дыхательную жидкость). Других принципиальных ограничений на глубину работы системы я не вижу. Было бы интересно сделать скафандр, в котором можно погрузиться в Марианскую впадину. Кстати, ко мне уже есть такой запрос…

Область применения

Выполнение операций в условиях значительного снижения или даже временного прекращения кровообращения. Это получило название операций на так называемых сухих органах: сердце, мозге и некоторых других. Наиболее широко общая искусственная гибернация используется при операциях на сердце для устранения дефектов его клапанов и стенок, а также на крупных сосудах, что требует остановки кровотока.

Преимущества

Существенное возрастание устойчивости и выживаемости клеток и тканей в условиях гипоксии при сниженной температуре. Это даёт возможность отключить орган от кровоснабжения на несколько минут с последующим восстановлением его жизнедеятельности и адекватного функционирования.

Диапазон температуры

Обычно используют гипотермию со снижением ректальной температуры до 30-28 °С. При необходимости длительных манипуляций создают более глубокую гипотермию с использованием аппарата искусственного кровообращения, миорелаксантов, ингибиторов метаболизма и других воздействий. При проведении продолжительных операций (несколько десятков минут) на «сухих» органах выполняют «глубокую» гипотермию (ниже 28 °С), применяют аппараты искусственного кровообращения и дыхания, а также специальные схемы введения Л С и средств для наркоза. Наиболее часто для общего охлаждения организма применяют жидкость с температурой +2-12 °С, циркулирующую в специальных «Холодовых» костюмах, надеваемых на пациентов или в «Холодовых» одеялах, которыми их укрывают. Дополнительно используют также ёмкости со льдом и воздушное охлаждение кожных покровов пациента.

Медикаментозная подготовка

С целью устранения или снижения выраженности адаптивных реакций организма в ответ на снижение его температуры, а также для выключения стресс-реакции непосредственно перед началом охлаждения пациенту дают общий наркоз, вводят нейроплегические вещества, миоре-лаксанты в различных комбинациях и дозах. В совокупности указанные воздействия обеспечивают значительное снижение обмена веществ в клетках, потребления ими кислорода, образования углекислоты и метаболитов, предотвращают нарушения КЩР, дисбаланса ионов и воды в тканях.



Эффекты медицинской гибернации

При гипотермии 30-28 °С (в прямой кишке):

Не наблюдается жизненно опасных изменений функции коры головного мозга и рефлекторной деятельности нервной системы;

Снижается возбудимость, проводимость и автоматизм миокарда;

Развивается синусовая брадикардия;

Уменьшаются ударный и минутный выбросы сердца;

Понижается АД;

Снижается функциональная активность и уровень метаболизма в органах и тканях.

Локальная управляемая гипотермия отдельных органов или тканей (головного мозга, почек, желудка, печени, предстательной железы и др.) применяется при необходимости проведения оперативных вмешательств или других лечебных манипуляций на них: коррекции кровотока, пластических процессов, обмена веществ, эффективности ЛС и других целей.

146.Проба Штанге, Сообразье, Мартине

Проба Штанге - проба с задержкой дыхания на вдохе. Необходимое оборудование: секундомер, (носовой зажим).

Порядок проведения обследования.

Проба с задержкой дыхания на вдохе проводится следующим образом. До проведения пробы у обследуемого дважды подсчитывается пульс за 30 сек в положении стоя. Дыхание задерживается на полном вдохе, который обследуемый делает после трех дыханий на 3/4 глубины полного вдоха. На нос одевается зажим или же обследуемый зажимает нос пальцами. Время задержки регистрируется по секундомеру. Тотчас после возобновления дыхания производится подсчет пульса. Проба может быть проведена дважды с интервалами в 3-5 мин между определениями.

Порядок обработки результатов обследования. По длительности задержки дыхания проба оценивается следующим образом:

Менее 39 сек - неудовлетворительно;

40-49 сек - удовлетворительно;

Свыше 50 сек - хорошо.

ПР у здоровых людей не должен превышать 1.2. Более высокие его значения свидетельствуют о неблагоприятной реакции сердечно-сосудистой системы на недостаток кислорода.

Проба Сообразе (на выдохе).

Проба Мартине.

В положение сидя определяется пульс за 10 секунд и артериальное давление. С манжетой на руке пациент выполняет 20 глубоких приседаний за 30 секунд. После выполненной нагрузки обследуемый сразу садится, в течение трех минут считают пульс и измеряют давление. На первой минуте первые 10 сек измеряется пульс, последующие 40 сек - артериальное давление, в последние 10 сек - пульс. На второй и третьей минутах повторяется измерение. Выделены основные типы реакций:

Нормотонический тип - учащение пульса на 60-80%, повышение систолического давления 10-30 мм.рт.ст., диастолическое изменяется незначительно.

Астенический тип - учащение пульса на 100%, систолическое и диастолическое давления изменяются незначительно.

Гипертонический тип - учащение пульса на 100%, повышение систолического артериального давления, диастолическое изменяется незначительно.

Дистонический тип и ступенчатый тип встречаются очень редко.

147.Методы фиксации отломков

Репозиция отломков заключается в устранении их смещения и точном сопоставлении кости по линии перелома. Восстановление нормальных функций конечности во многом определяется полным устранением смещения и точным сопоставлением отломков. Для устранения ротационного смещения отломков периферическому отломку кости необходимо придать правильное положение по отношению к продольной оси конечности, что достигается вращением периферической части конечности в противоположную от смещения сторону, т.е. необходимо уложить конечность строго по её оси. Лишь при переломе предплечья в средней и нижней трети ему придают среднее положение между супинацией и пронацией.

Устранить угловое смещение отломков удаётся относительно легко. Один из помощников удерживает центральный отломок, фиксируя руками центральную часть конечности. Врач, проводящий репозицию, устраняет угол смещения путём тяги дистальной части конечности (ниже линии перелома) и восстанавливает продольную ось конечности. Для устранения смещения отломков по длине иногда необходимо приложить значительные усилия, чтобы преодолеть тягу рефлекторно сократившихся мышц, особенно при переломе бедренной кости. Репозицию производят тягой по длине и противотягой за центральный конец конечности. При переломе бедра и плеча в процессе репозиции конечности придают среднее физиологическое положение: для нижней конечности - сгибание в тазобедренном и коленном суставах под углом 140°, для верхней - отведение плеча в сторону на 60° и кпереди на 30°, при сгибании в локтевом суставе на 90° предплечье должно занимать среднее положение между супинацией и пронацией. Восстановление длины конечности определяют её измерением.

Наибольшие сложности возникают при устранении смещения отломков по ширине. Пользуются теми же приёмами тяги и противотяги в среднем физиологическом положении конечности. При поперечных диафизарных переломах бедра и плеча со смещением отломков по ширине чаще встречается интерпозиция тканей. Сопоставление отломков затрудняют костные шипы и выступы на отломках кости по линии перелома. Такие виды переломов служат относительным показанием к оперативному лечению - открытой репозиции отломков. Иногда репозицию проводят с помощью петли Глиссона или манжетки, специальных аппаратов, но чаще используют ручную репозицию или репозицию с помощью постоянного вытяжения. Устранение смещения и сопоставление костных отломков могут быть одномоментными или постепенными, например, при лечении переломов постоянным вытяжением или реклинацией при компрессионном переломе позвоночника. На специальном столе больного укладывают на спину в положении резкого переразгибания на несколько суток - за это время устраняется смещение отломков позвонка. При консервативном лечении переломов широко применяют иммобилизацию с помощью гипсовой повязки, которая является лучшим средством для внешней фиксации отломков и иммобилизации конечности.

148.Результаты, каких исследований показывают состояние свертывающей системы

Экспресс-диагностика:

1. Определение времени свертывания по Ли-Уайту.

2. Подсчет количества тромбоцитов.

3. Тест спонтанного лизиса сгустка.

4. Тромбин-тест.

5. Тест на деградации фибрина/фибриногена.

Углубленное исследование:

1. Электрокоагулография.

2. Тромбоэластография.

3. Гемостазиограмма.

149.Что подразумевается под комбинированным лечением злокачественных опухолей

Комбинированное лечение предполагает использование обязательно оперативного лечения вместе с лучевой терапией или химиотерапией.

Лучевая терапия и химиотерапия в составе комбинированного лечения могут быть:

а) неоадъювантными (предоперационными) – при местно-распространенном процессе дает возможность значительно уменьшить размеры первичной опухоли и регионарных метастазов, достич операбельности; рано воздействовать на возможные отдаленные метастазы; выявить опухоли, не чувствительные к данному режиму химиотерапии и таким образом определить более рациональное послеоперационное лечение

б) адъювантными (послеоперационными) – комплекс дополнительных лечебных мероприятий, направленных на уничтожение скрытых микрометастазов после хирургического удаления первичной опухоли; ее цель – улучшение безрецидивной и общей выживаемости.

150.Методы несвободной кожной пластики

Несвободная кожная пластика предусматривает формирование лоскута кожи и подкожной клетчатки, сохраняющего связь с материнской тканью через питающую ножку. Ножка лоскута должна быть достаточно широкой, чтобы обеспечить его хорошее кровоснабжение. Ножку нельзя сдавливать повязкой, а при перемещении лоскута следует избегать перекрута ножки вокруг продольной оси.

Местную (регионарную) кожную пластику выполняют с использованием окружающих тканей путём их перемещения.

В части случаев после мобилизации окружающих тканей дефект кожи можно ушить обычным способом.

Послабляющие разрезы, проведённые на расстоянии нескольких сантиметров от краёв дефекта, позволяют сблизить края раны и наложить швы.

Z-образную пластику применяют при деформации кожи грубыми рубцами для восстановления нормальных соотношений частей тела, изменённых рубцовыми сращениями. После иссечения рубцовых тканей выкраивают и перемещают кожные лоскуты.

Вращающийся языкообразный кожный лоскут выкраивают на участке здоровой кожи рядом с дефектом и, перемещая его, закрывают дефект (например, пластика носа по индийскому методу). Донорский участок закрывают свободным кожным лоскутом или ушивают обычным способом.

Пластику перемещением лоскута с отдалённых участков тела применяют в случаях, когда в окружности дефекта нет тканей, подходящих для формирования лоскута. Прямую пересадкукожного лоскута с отдалённых участков тела используют, если представляется возможность близко сопоставить донорский участок и место дефекта, т.е. произвести одномоментное закрытие дефекта – итальянский метод.

Мостовидную пластику, рекомендованную Н.В. Склифосовским, используют для пластики кожных дефектов пальцев, кисти, предплечья. Донорским участком может быть кожный лоскут на животе, в области предплечья. В области донорского участка проводят два параллельных разреза, между ними мобилизуют участок кожи - создают «мостик», под который помещают повреждённый фрагмент конечности (палец, предплечье) так, чтобы отслоённый лоскут покрывал дефект. Лоскут пришивают к ране. Приживление, как и при итальянском методе, наступает на 10-15-е сутки. В эти сроки можно отсечь лоскут от питающей ножки.

Пластика мигрирующим лоскутом предусматривает формирование лоскута в отдалённых частях тела, постепенно его перемещают к дефекту.

Стебельчатый лоскут формируют за счёт сшивания краёв кожного лоскута между собой с образованием трубчатого стебля в виде рукоятки чемодана - «филатовский стебель». На передней поверхности живота проводят два параллельных разреза до мышечной фасции (длина кожных разрезов зависит от величины дефекта), края кожно-жирового лоскута сшивают, а место взятия лоскута зашивают. Отношение длины кожного стебля к ширине составляет не более 3:1. Через 10-14 дней в стебель прорастают кровеносные сосуды, спустя 4 нед конец стебля отсекают, подшивают к руке и через 10- 14 дней вшивают в место дефекта.

Круглый мигрирующий стебель используют при пластике обширных кожных дефектов, трофических язв и незаживающих ампутационных культей, пластике лица (создании искусственного носа, губ, закрытии «волчьей пасти»), в хирургии пищевода, глотки, трахеи, при пластике влагалища в случае его атрезии и при лечении гермафродитизма.

151.Стерилизация не режущих инструментарий

Терапевтическая гипотермия может проводиться инвазивными и неинвазивными методами и подразделяется на общую и локальную.

Инвазивные методы предполагают инфузию охлажденного физиологического раствора в центральную вену. Плюсом данной методики является управляемость гипотермии, которая позволяет достигнуть температурного значения в пределах ~ 1°С от целевого, регулировать скорость охлаждения и скорость согревания. Главной отрицательной стороной этого метода является системность гипотермии, что предусматривает высокую вероятность развития вышеперечисленных побочных эффектов. Также имеется вероятность развития кровотечения, тромбозов, инфекционных осложнений, которые в условиях гипотермии особенно опасны.

Неинвазивные методики предусматривают охлаждение тела пациента через внешние покровы. Один из вариантов -- это теплообменное одеяло, которое имеет несколько скоростей охлаждения и согревания, что позволяет добиться управляемой общей гипотермии всего организма. Отдельную группу представляют методы локального поверхностного охлаждения, один их которых - краниоцеребральная гипотермия.

Краниоцеребральная гипотермия.

Краниоцеребральная гипотермия (КЦГ)- охлаждение головного мозга через наружные покровы головы с целью повышения его устойчивости к кислородному голоданию.

Для этого применяли различные средства: резиновые или пластиковые пузыри, наполненные льдом, охлаждающие смеси (снег с солью, лед с солью), резиновые шлемы с двойными стенками, между которыми циркулирует охлажденная жидкость, и бандажи-обтекатели, воздушные гипотермы с малой циркуляцией охлажденного воздуха. Однако все эти устройства несовершенны и не приводят к желаемому результату. В 1964 г. в нашей стране был создан (О.А. Смирнов) и в настоящее время серийно выпускается промышленностью прибор «Холод-2Ф», в основу которого положен оригинальный струйный способ охлаждения головы, а затем «Флюидо-Краниотерм» с воздушным охлаждением. КЦГ с помощью этих приборов имеет ряд преимуществ перед общим охлаждением, поскольку в первую очередь снижается температура головного мозга, прежде всего коры, т. е. структуры, наиболее чувствительной к кислородному голоданию.

Когда температура верхних слоев головного мозга, прилегающих к своду черепа, составляет 26 -- 22 °С, температура в пищеводе или прямой кишке сохраняется на уровне 32 -- 30 °С, т. е. в границах, существенно не влияющих на сердечную деятельность. Аппараты «Холод-2Ф» и «Флюидо-Краниотерм» позволяют экстренно начать охлаждение во время операции, не прерывая ее и не мешая работе хирурга; применять гипотермию в послеоперационном периоде в целях реанимации; автоматически поддерживать температуру теплоносителя и тела больного в процессе охлаждения; согревать больного; контролировать температуру тела больного одновременно в четырех точках и температуру теплоносителя.

Очевидно, что гарантированно добиться равномерного снижения температуры тканей головного мозга возможно только при общей гипотермии. Отведение тепла от поверхности головы приводит к охлаждению поверхностных тканей, костей черепа, а только после этого -- к снижению температуры поверхностных областей головного мозга. При этом центральные притоки тепла остаются достаточно мощными, что формирует выраженную температурную гетерогенность мозга, роль которой при патологии не изучена. Однако из-за перечисленных побочных эффектов температурные и временные рамки общей гипотермии строго ограничены, что снижает нейропротективное действие этой методики.

КЦГ применяют:

  • · при операциях, сопровождающихся непродолжительным выключением сердца из кровообращения, таких, как ушивание вторичного дефекта межпредсердной перегородки, вальвулопластика при стенозе легочной артерии, вальвулопластика при стенозе аорты и в ряде случаев при триаде Фалло;
  • · при опасности тяжелой гипоксии в связи с характером самого оперативного вмешательства, например, наложение межартериальных анастомозов у «синих» больных, при устранении коарктации аорты или реконструктивных операциях на брахиоцефальных ветвях дуги аорты;
  • · в неотложной нейрохирургии. Особенно эффективна КЦГ у больных с тяжелой черепно-мозговой травмой, сопровождающейся выраженным отеком мозга и нарушениями сердечной деятельности и дыхания. При снижении температуры в наружном слуховом проходе до 31 -- 30°С и сохранении ректальной температуры в пределах от 34 до 35 °С отмечается значительное улучшение сердечной деятельности и дыхания, что объясняется уменьшением отека мозга, гипоксии и вторичных изменений;
  • · при реанимации больных (лечебная гипотермия). КЦГ при клинической смерти может стать решающей в исходе оживления, так как она предотвращает или уменьшает отек мозга.

Общая анестезия при КЦГ не отличается от таковой при общей гипотермии. Охлаждение начинают после введения в наркоз и интубации. Голову больного помещают в шлем аппарата, снабженный многочисленными отверстиями для струек холодной воды или воздуха. Оптимальной температурой теплоносителя (вода, воздух) следует считать 2°С. Более низкие температуры опасны из-за обморожения кожных покровов. Температуру тела больного измеряют в нескольких точках (внутри слухового прохода на уровне барабанной перепонки, в носоглотке, пищеводе и прямой кишке). Температура внутри слухового прохода на уровне барабанной перепон­ки соответствует температуре коры мозга на глубине 25 мм от внутреннего свода черепа, о температуре тела судят по температуре в прямой кишке. Скорость охлаждения головного мозга с помощью аппаратов колеблется от 7 до 8,3°С/мин, а тела -- 4,3 --4,5 °С/мин. Охлаждение продолжают до температуры в прямой кишке не ниже 33 -- 32 °С, в пищеводе 32-31°С.

КЦГ вызывает постепенное снижение АД и урежение пульса. Изменения ЭКГ зависят от характера оперативного вмешательства и продолжительности выключения сердца из кровообращения. Исследования биоэлектрической активности головного мозга не выявляют каких-либо существенных изменений при охлаждении указанным способом до температуры 25 °С в наружном слуховом проходе. Во время охлаждения наблюдается снижение буферных оснований крови и рСО2 снижение количества белка и его фракции, уменьшение фибриногена и повышение фибринолитической активности. Однако эти изменения обратимы и при согревании больного до исходной температуры нормализуются.

Больного согревают с помощью электрических грелок, которые помещают на операционном столе под спину больного. После окончания операции согревание продолжают при помощи полиэтиленовой накидки, под которую терморегулятором нагнетается теплый воздух.


063. К наиболее частым симптомам в фазе манифестации сепсиса относятся: а) тромбоцитопения; б) удлинение протромбинового времени ; в) уменьшение протромбинового времени; г) увеличение концентрации фибриногена плазмы; д) уменьшение концентрации фибриногена плазмы; е) гиперазотемия; ж) гипопротеинемия; з) гемоконцентрация; и) лимфоцитоз. Выбе­рите правильную комбинацию ответов:
1) в, г;

2)* а, б, д, е, ж;

3) в, г, з, и;

5) а, б, г.
064. Для хирургического сепсиса характерно: а) слабая зависи­мость от характеристик первичного очага инфекции; б) всегда сопровождается упорной бактериемией; в) высокая частота развития грамотрицателыюго септического шока; г) высокая частота развития вторичных септикопиемических очагов при грамотрицательном сепсисе; д) слабая зависимость специфич­ности клинической картины от вида возбудителя; е) высокая частота развития синдрома полиорганной дисфункции. Выбе­рите правильную комбинацию ответов:
1) а, б, в;

5)* в, д, е.
065. Септический уровень бактериальной контаминации ран со­ставляет (микробных тел на 1 г ткани):
1)* 10 5 -10 6 ;

5) более 10 9 .
066. Выберите правильное определение сепсиса (по материалам Конференции согласия, Атланта, 1992). Сепсис - это сочетание:
1) периодической или упорной бактериемии с несанированным очагом инфекции;

2) упорной бактериемии с синдромом полиорганной дисфункции;

3)* системного ответа на воспаление с наличием очага инфекции;

4) синдрома системной воспалительной реакции с гнойно-резорбтивной лихорадкой;

5) периодической или упорной бактериемии, очага инфекции и синдрома полиорганной дисфункции.
067. Ранними симптомами анаэробной инфекции являются: а) вы­сокая температура тела; б) неадекватное поведение больного; в) распирающие боли в ране; г) отечность тканей раны; д) частый слабый пульс. Выберите правильную комбинацию ответов:
1) а, б, в;

2) б, в, г, д;

3) а, б, в, г;

4) а, в, г, д;

5)* верно все.
068. К местным признакам инфекционного раневого процесса, вы­званного неклостридиалыюй анаэробной микрофлорой , отно­сятся: а) ткани раны серого цвета; б) обильное количество грязно-серого, бурого отделяемого; в) отсутствие некрозов; г) обилие некротических тканей; д) наличие ярко-розовых грануляций; е) скопление в мягких тканях газа. Выберите правильную комбинацию ответов:
1)* а, б, г;

4) а, б, д, е;

5) верно все.
069. При комплексном лечении газовой гангрены используют: а) иссечение некротизированных тканей; б) максимально ши­рокое рассечение тканей; в) антибактериальную монотера­пию; г) дезинтоксикационную инфузионную терапию; д) ги­пербарическую оксигенацию; е) антибактериальную комбини­рованную терапию; ж) миорелаксанты + ИВЛ. Выберите пра­вильную комбинацию ответов:
1)* а, б, г, д, е;

5) верно все.
070. Лечение столбняка включает: а) противостолбнячный глобу­лин; б) столбнячный анатоксин; в) противостолбнячную сы­воротку; г) транквилизаторы и барбитураты; д) миорелаксан­ты; е) ИВЛ. Выберите правильную комбинацию ответов:
1) а, б, в, г;

2) в, г, д, е;

5)* верно все.
071. Необходимым условием для заживления раны первичным натяжением яв­ляется: а) наличие в ране очагов некроза и гематом; б) сопри­косновение краев раны; в) сохранение жизнеспособности кра­ев раны; г) небольшая зона повреждения; д) бактериальная обсемененность тканей раны выше критического уровня. Вы­берите правильную комбинацию ответов:
1) а, в;

5) верно все.
072. Для местного лечения гнойных ран в фазе воспаления применя­ются: а) жирорастворимые мази; б) протеолитические фермен­ты; в) водорастворимые мази; г) промывание антисептиками; д) иммунизация. Выберите правильную комбинацию ответов:
1) а, б;

5) а, г, д.
073. В какие сроки надо произвести первичную обработку раны у больного, доставленного в состоянии тяжелого шока?
1) сразу же при поступлении;

2)* сразу после выведения больного из шока;

3) через 2 часа после поступления;

4) на следующий день;

5) после переливания крови.
074. Какие манипуляции производят при первичной хирургиче­ской обработке раны? а) иссечение краев раны; б) остановка кровотечения ; в) удаление из раны инородных тел ; г) промы­вание раны антибиотиками; д) иссечение дна раны; е) иссече­ние стенок раны. Выберите правильную комбинацию ответов:
1) а, в, г, д;

2)* а, б, в, д, е;

3) б, в, г, д;

4) а, б, г, д;

5) верно все.
075. К общим предрасполагающим немикробным факторам на­гноения послеоперационной раны относятся: а) пожилой воз­раст; б) кахексия больного в) прием гормонов и иммунодепрессантов; г) травма краев раны инструментом, бельем. Выберите правильную комбинацию ответов:
1) а, в;

5) б, г.
076. Критический уровень обсемененности ткани раны составляет (микробных тел на 1 г ткани):
1) 102-103;

5) 108-109.
077. Огнестрельные раны характеризуются: а) наличием входного отверстия меньшего размера, чем выходное; б) наличием зоны разрушения; в) наличием зоны ушиба и некроза; г) наличием зоны молекулярного сотрясения; д) наличием зоны ожога; е) асептичностью раневого канала. Выберите правильную комбинацию ответов:
1) б, в, д;

3) а, б, д, е;

4)* а, б, в, г;

5) верно все.
078. Различают следующие виды заживления ран: а) путем вто­ричного рассасывания гематомы; б) путем биологического слипания тканей; в) вторичным натяжением; г) первичным натяжением; д) под повязкой; е) под гипсовой лангетой; ж) под струпом. Выберите правильную комбинацию ответов:
1) а, б, д;

5) верно все.
079. Применение локальной гипотермии в послеоперационном пе­риоде способствует:
1) криодеструкции микробных тел;

2)* остановке капиллярного кровотечения;

3) быстрой адгезии краев раны;

4) предупреждению расхождения краев раны;

5) предупреждению тромбозов и эмболии.
080. На основании каких данных в первые часы после термиче­ской травмы можно предположить глубокий ожог? а) болевая чувствительность сохранена; б) болевая чувствительность от­сутствует; в) имеется отек непораженных окружающих тка­ней; г) отек отсутствует; д) при термографии имеется сниже­ние теплоотдачи. Выберите правильную комбинацию ответов:
1) а, б, д;

3)* б, в, д;

5) б, д.
081. Ожоговая болезнь развивается: а) при поверхностных ожогах до 10% площади тела; б) при ожогах более 15% площади тела; в) при ожогах не менее 20% площади тела; г) при глубоких ожогах от 5 до 10% площади тела; д) при ожогах 10% площади тела; е) при ожогах не менее 30% площади тела. Выберите правильную комбинацию ответов:
1) а, г;

5) е.
082. Какие периоды выделяются в течении ожоговой болезни и ка­кова их последовательность? а) острая ожоговая токсемия ; б) фаза дегидратации; в) ожоговый шок; г) септикотоксемия; д) фаза гидратации; е) реконвалесценция. Выберите правиль­ную комбинацию ответов:
1) а, в, б, г;

2) б, в, д, е;

3)* а, в, г, е;

5) а, в, г, е.
083. Наиболее эффективным элементом первой медицинской помо­щи на месте происшествия при ограниченных по площади (до 10% поверхности тела) ожогах I-II степени тяжести является:
1) смазывание обожженной поверхности вазелиновым маслом;

2) наложение сухой асептической повязки;

3) наложение повязки с раствором антисептика;

4)* охлаждение обожженного участка в течение 8-10 минут про­точной холодной водой;

5) применение жирорастворимой мази.
084. Отморожение какой степени характеризуется некротическим повреждением поверхностного слоя кожи без повреждения ро­сткового слоя и восстановлением разрушенных элементов ко­жи через 1-2 недели?
1) отморожение I степени;

2)* отморожение II степени;

3) отморожение III степени;

4) отморожение III-IV степени;

5) отморожение IV степени.
085. Какие мероприятия необходимо проводить при лечении отмо­рожений в дореактивный период? а) согревание пораженного участка тела в воде; б) согревание переохлажденного участка тела теплым воздухом; в) согревание переохлажденного участ­ка тела растиранием; г) полная изоляция переохлажденного участка тела от внешнего теплового воздействия; д) примене­ние сосудорасширяющих средств; е) введение теплых инфузионных растворов; ж) новокаиновые блокады. Выберите пра­вильную комбинацию ответов:
1) а, д, е;

3)* г, д, е;

5) б, д, е.
086. Какие патологические процессы имеют значение в развитии трофических язв? а) хронические расстройства крово- и лим­фообращения; б) травматические воздействия; в) болезни нервной системы; г) нарушение обмена веществ; д) системные болезни; е) инфекционные болезни; ж) опухоли. Выберите пра­вильную комбинацию ответов:
1) а, б, д, е;

2) б, г, е, ж;

5)* верно все.
087. Образованию пролежней способствуют: а) сдавление тканей гипсовой повязкой; б) длительное нахождение интубационной трубки в трахее; в) длительное пребывание дренажа в брюшной полости; г) сдавление тканей при длительном лежачем положе­нии больного; д) нарушение иннервации при травме спинного мозга; е) длительное давление камня на стенку желчного пузы­ря. Выберите правильную комбинацию ответов:
1) а, б, в;

5)* верно все.
088. Предоперационная подготовка при экстренном оперативном вмешательстве включает в себя: а) гигиеническую обработку кожи в зоне операции ; б) бритье операционного поля; в) сана­цию ротовой полости; г) проведение инфузионной терапии; д) очистительную клизму; е) спирометрию; ж) выполнение ЭКГ. Выберите правильную комбинацию ответов:
1) а, б, в;

4) а, б, в, е;

5) в, д, ж.
089. Когда следует проводить бритье кожи перед плановой операцией?
1) перед поступлением в стационар;

2) за сутки до операции;

3) вечером накануне операции;

4)* утром в день операции;

5) непосредственно перед началом операции на операционном столе.
090. Какие методы профилактики раневой инфекции следует при­менить перед плановой операцией? а) дыхательная гимнасти­ка; б) активизация больного; в) десенсибилизация организма; г) санация полости рта; д) смена белья больного; е) гигиениче­ский душ; ж) стимуляция диуреза; з) обработка операционно­го поля. Выберите правильную комбинацию ответов:
1) а, г, д, з;

5)* г, д, е, з.
091. К задачам предоперационного периода относятся: а) оценка операционно-анестезиологического риска; б) определение срочности выполнения операции; в) установление диагноза; г) определение показаний к операции; д) выявление состояния жизненно важных органов и систем; е) определение характера операции; ж) подготовка больного к операции. Выберите пра­вильную комбинацию ответов:
1) б, г, д;

5)* верно все.
092. Какие заболевания требуют выполнения срочных операций? а) рак желудка; б) перфоративная язва желудка; в) острый ап­пендицит; г) злокачественная опухоль легкого; д) ущемленная паховая грыжа; е) липома плеча. Выберите правильную комби­нацию ответов:
1)* б, в, д;

5) а, г.
093. Укажите этапы хирургической операции: а) хирургический доступ; б) помещение больного на операционный стол; в) опе­ративный прием; г) остановка кровотечения; д) ушивание ра­ны. Выберите правильную комбинацию ответов:
1) а, б, в;

2)* а, в, д;

3) а, в, г, д;

5) верно все.
094. Противопоказаниями к срочной операции по поводу рас­пространенного перитонита являются: а) свежий инфаркт миокарда; б) тяжелый травматический шок при сочетанной травме; в) агональное состояние больного; г) ранний после­операционный период; д) нет противопоказаний. Выберите правильную комбинацию ответов:
1) а, б, в;

5) д.
095. Радикальная операция - это:
1)* операция, претендующая на полное излечение;

2) операция, полностью исключающая вероятность возврата ос­новного источника заболевания;

3) иссечение опухоли в пределах здоровых тканей;

4) удаление пораженного органа и блокада путей метастазирования;

5) вмешательство, направленное на полную ликвидацию прояв­лений заболевания.
096. В первые сутки после операции чаще бывают следующие осложне­ния: а) наружное кровотечение; б) эвентрация; в) образование ге­матомы в ране; г) нарушение ритма и остановка сердца; д) на­гноение раны. Выберите правильную комбинацию ответов:
1) а, б, в;

3)* а, в, г;

5) верно все.
097. Катаболическая фаза послеоперационного состояния больного характеризуется: а) активацией симпатико-адреналовой сис­темы; б) увеличением уровня глюкозы крови; в) повышен­ным распадом жировой ткани; г) увеличением жизненной ем­кости легких; д) уменьшением диуреза. Выберите правильную комбинацию ответов:
1) а, б, в;

4)* а, б, в, д;

5) верно все.
098. Развитию пневмонии в послеоперационном периоде способст­вует: а) пожилой возраст; б) гиповентиляция легких во время операции; в) особенности диеты; г) неадекватное обезболива­ние после операции; д) длительное горизонтальное положе­ние; е) ингаляция кислорода; ж) в/в введение антибиотиков; з) дыхательная гимнастика; и) хроническая сердечная недос­таточность. Выберите правильную комбинацию ответов:
1) а, б, в, г, д;

2) б, д, е, ж;

3) б, ж, з, и;

4)* а, б, г, д, и;

5) а, б, г, е, и.
099. Профилактика тромбоза глубоких вен после операции включа­ет: а) антибиотикотерапию; б) бинтование конечности; в) дли­тельный постельный режим после операции; г) раннюю акти­визацию больных после операции ; д) применение антикоагу­лянтов. Выберите правильную комбинацию ответов:
1) а, б;

4)* б, г, д;

5) а, в, д.
100. Анаболическая фаза течения послеоперационной болезни харак­теризуется: а) восстановлением мышечной массы; б) лизисом белков и накоплением продуктов их распада; в) активизацией гормональной системы; г) восстановлением азотистого баланса; д) поступлением экзогенной энергии, превосходящей потребности организма. Выберите правильную комбинацию ответов:
1)* а, г, д;

5) а, б, в.
Анестезиология, реаниматология, интенсивная терапия
001. Операционный стресс-это:
1) биологические процессы защиты в ответ на хирургическую травму;

2)* биологические процессы защиты на комплекс различных влияний: страх, возбуждение, боль, влияние наркоза, образо­вание ран и травма тканей тела, потеря крови и т.д.;

3) биологические процессы защиты только на боль (обезболи­вание не является фактором стресса);

4) биологические процессы защиты, возникает только в начале операции и заканчивается после ее окончания;

5) биологические процессы защиты на травму и кровопотерю.
002. Адекватная защита организма больного от операционного стресса возможна при соблюдении компонентности общей ане­стезии. Выберите правильное сочетание компонентов общей анестезии:
1) глубокий сон с добавлением наркотических анальгетиков;

2)* выключение сознания, нейровегетативная защита, анальгезия и миорелаксация;

3) выключение сознания и миорелаксация;

4) состояние нейролепсии и анальгезии;

5) наркоз, миорелаксация и нейровегетативная защита.
003. Перед плановым и экстренным оперативными вмешательст­вами пациентам проводится премедикация. Назовите основ­ные цели премедикации:
1) анальгезия и профилактика вагусных реакций;

2) нейровегетативная стабилизация, профилактика вагусных рефлексов, устранение страха перед операцией;

3) создание фона анальгезии, парасимпатолитическое действие, нейровегетативная защита;

4)* снятие психоэмоционального напряжения , нейровегетатив­ная стабилизация, анальгезия и потенцирование анестетиков, профилактика вагусных реакций;

5) психоэмоциональная стабилизация, подавление секреции бронхиальных желез, профилактика дыхательных нарушений.
004. Известно, что целями премедикации являются: седация и ней-ровегетативное торможение, анальгезия, профилактика и уст­ранение нежелательных рефлекторных реакций. Выберите из представленных ниже комбинаций лекарственных препара­тов наиболее эффективное и удачное сочетание, которое обес­печивало бы аналитический и седативный эффект:
1)* диазепам (мидазолам, дормикум), фентанил (промедол);

2) диазепам, дроперидол;

3) аминазин, димедрол;

4) норфин, барбитураты;

5) анальгин, клофелин.

Медицинская гибернация

Управляемая (искусственная) гипотермия применяется в медицине в двух разновидностях: общей и местной.

Ы Вёрстка Таблица

Область применения

Выполнение операций в условиях значительного снижения или даже временного прекращения кровообращения. Это получило название операций на так называемых «сухих» органах: сердце, мозге и некоторых других.

Наиболее широко общая искусственная гибернация используется при операциях на сердце для устранения дефектов его клапанов и стенок, а также на крупных сосудах, что требует остановки кровотока.

Преимущества

Существенное возрастание устойчивости и выживаемости клеток и тканей в условиях гипоксии при сниженной температуре. Это даёт возможность отключить орган от кровоснабжения на несколько минут с последующим восстановлением его жизнедеятельности и адекватного функционирования.

Диапазон температуры

Обычно используют гипотермию со снижением ректальной температуры до 30–28 °C. При необходимости длительных манипуляций создают более глубокую гипотермию с использованием аппарата искусственного кровообращения, миорелаксантов, ингибиторов метаболизма и других воздействий. При проведении продолжительных операций (несколько десятков минут) на «сухих» органах выполняют «глубокую» гипотермию (ниже 28 °C), применяют аппараты искусственного кровообращения и дыхания, а также специальные схемы введения ЛС и средств для наркоза.

Наиболее часто для общего охлаждения организма применяют жидкость с температурой +2–12 °C, циркулирующую в специальных «холодовых» костюмах, одеваемых на пациентов или в «холодовых» одеялах, которыми их укрывают. Дополнительно используют также ёмкости со льдом и воздушное охлаждение кожных покровов пациента.

Медикаментозная подготовка

С целью устранения или снижения выраженности адаптивных реакций организма в ответ на снижение его температуры, а также для выключения стресс‑реакции непосредственно перед началом охлаждения пациенту дают общий наркоз, вводят нейроплегические вещества, миорелаксанты в различных комбинациях и дозах. В совокупности указанные воздействия обеспечивают значительное снижение обмена веществ в клетках, потребления ими кислорода, образования углекислоты и метаболитов, предотвращают нарушения КЩР, дисбаланса ионов и воды в тканях.

Эффекты медицинской гибернации

При гипотермии 30–28 °C (в прямой кишке)

не наблюдается жизненно опасных изменений функции коры головного мозга и рефлекторной деятельности нервной системы;

снижается возбудимость, проводимость и автоматизм миокарда;

развивается синусовая брадикардия,

уменьшаются ударный и минутный выбросы сердца,

понижается АД,

снижается функциональная активность и уровень метаболизма в органах и тканях.