Меню
Бесплатно
Главная  /  Разное  /  Свойства нервных центров, характеристика, функции. Нервные центры. Свойства

Свойства нервных центров, характеристика, функции. Нервные центры. Свойства

Одностороннее проведение возбуждения. В нервных центрах прохождение импульсов возбуждения по цепи нейронов осуществляется только в одном направлении: от чувствительного нерва через промежуточные к двигательному, а от двигательного - к органу-исполнителю. Это обусловлено односторонней синаптической передачей импульсов от одной нервной клетки к другой с помощью медиатора, который выделяется концевым аппаратом аксона и содержится лишь в пресинаптической щели. В связи с этим поток нервных импульсов в рефлекторной дуге имеет определенное направление. Это свойство обеспечивает координирующую роль центральной нервной системы и способствует замыкательной функции условно-рефлекторных связей.
Замедление проведения возбуждения. Это свойство называется центральной задержкой, или латентным (скрытым) периодом рефлекса. Центральная задержка обусловлена более медленным проведением нервных импульсов через синапсы.
Интервал от начала раздражения рецептора до появления ответной реакции - 0,2–0,5 секунды. Чем сложнее рефлекс, тем длительнее центральная задержка. Дрессировщику необходимо учитывать скрытый период при выработке условного рефлекса и подкрепляющий раздражитель надо применять не раньше 0,5 секунды после воздействия сигнального раздражителя. Скрытый период рефлекса увеличивается при утомлении и заболевании животного.
Последействие. Присуще всем нервным центрам и характеризуется тем, что на короткое раздражение проявляется длительная ответная реакция, т. е. рефлекторный акт длится еще некоторое время после того, как раздражение рецептора прекращено. Такое последействие объясняется тем, что нервные импульсы от рецепторов поступают к двигательным центрам по различным нервным путям неодновременно: по коротким быстрее, чем по длинным. Запаздывающие импульсы поддерживают возбужденное состояние соответствующего нервного центра. Остаточное возбуждение в нервных центрах может сохраняться до 2 секунд и тем самым способствовать лучшей замыкательной функции при образовании условных рефлексов. Кроме того, в практике дрессировки нужно помнить, что после окончания действия любого раздражителя требуется некоторое время для спада остаточного возбуждения нервного центра и освобождения рефлекторных путей для новой рефлекторной деятельности.
Суммация. Происходит путем накопления слабых допороговых раздражений до критического потенциала, способного вызвать возбуждение нервного центра. Различают пространственную и временную суммацию. Пространственная суммация наблюдается в случае одновременного воздействия раздражителей допороговой силы на несколько чувствительных нейронов. Поступившие импульсы слабой силы суммируются в нервном центре и вызывают возбуждение. Суммация во времени происходит при активизации одного и того же чувствительного нейрона серией последовательных раздражений допороговой силы. Слабые импульсы от предыдущих раздражений накладываются друг на друга, суммируются и вызывают рефлекс. Суммация в пространстве и во времени в нервных центрах происходит одновременно. Они дополняют и усиливают друг друга и, например, увеличивают обонятельную и слуховую чувствительность у собаки, что так необходимо при работе по чутью, когда исключительно слабые раздражения запаховых частиц (1 молекула в одном литре воздуха) вызывают запаховые ощущения и соответствующие ответные реакции.
Трансформация. Свойство нервных центров изменять частоту и силу передающихся импульсов, т. е. трансформировать. Проявляется в активизации и перестройке нейронов на более высокий или более низкий ритм и изменении их лабильности, обеспечивает взаимодействие и установление связи между различными нервными центрами и другими отделами нервной системы, что имеет важное значение в замыкании условно-рефлекторных связей при дрессировке собак.
Облегчение. Свойство нервных центров обеспечивать высокую возбудимость и эффективность рефлекторной деятельности нервной системы. Сущность облегчения заключается в том, что после каждого раздражения в нервном центре повышается возбудимость к повторным раздражениям, следующим через небольшие промежутки времени. Один поток импульсов как бы облегчает действие другого и способствует образованию условного рефлекса.
Проторение. Способность одних нервных центров повышать возбудимость других и вступать во взаимодействие через обмен и передачу импульсов возбуждения между центрами по нейронным путям. Процесс образования временной связи рассматривается как результат взаимодействия двух очагов возбуждения в коре, следствием чего является проторение пути между этими корковыми пунктами. Проходимость пути обусловлена функциональными и морфологическими изменениями в синапсах.
Иррадиация возбуждения. При сильном и длительном раздражении импульсы, поступившие в нервную систему, не ограничиваются возбуждением одного рефлекторного центра, а распространяются на другие центры. Чем сильнее раздражение, тем больше нервных центров охватывает иррадиация. Возбуждение большого количества различных нервных центров позволяет отобрать из них наиболее нужные и установить между ними новые функциональные связи - условные рефлексы. Большинство двигательных условных рефлексов формируется благодаря иррадиации возбуждения. Излишняя иррадиация возбуждения центральной нервной системы нарушает уравновешенность поведенческих реакций, приводит к расстройству рефлекторной деятельности. Иррадиация возбуждения ограничивается и уравновешивается торможением.
Торможение. Тормозной процесс - необходимое условие в координации нервной деятельности. Торможение возникает в определенных нервных структурах под влиянием волны возбуждения, которая подавляет другое возбуждение. При торможении выключается деятельность ненужных в данный момент органов и предохраняется от чрезмерного перенапряжения работа нервных центров. В нервной системе вырабатываются тормозные условные рефлексы: прекращения нежелательных действий, выдержки, дифференцировки и др.
Доминанта. Преобладание активности одних нервных центров над активностью других.
Доминирующий (господствующий) очаг возникает при определенном функциональном состоянии нервных центров. Одно из условий его образования - повышенная возбудимость нервных клеток одного или нескольких нервных центров под влиянием определенных нервных и гуморальных факторов. Возбудимость доминирующего очага усиливается суммированием импульсов, поступающих из других нервных центров, рефлекторная деятельность которых подавляется, а рефлекторная деятельность доминирующего очага заметно усиливается. Установившееся доминирование при инстинктах может быть продолжительным состоянием, которое определяет поведение животного на тот или иной срок. Доминанту можно наблюдать и в условно-рефлекторной деятельности. Доминирующий очаг возбуждения в коре головного мозга притягивает к себе импульсы нервных центров других очагов возбуждения и тем самым способствует суммации, облегчению, проторению и замыканию условно-рефлекторных связей на сигналы дрессировщика. Доминанта по теории академика И. П. Павлова имеет главенствующее значение в механизме образования и проявления условных рефлексов. У собаки всегда сильно проявляются стойко выработанные навыки, доминирующие над другими рефлексами и обеспечивающие безотказное управление собакой при отвлекающих раздражителям. Дрессировщику необходимо учитывать свойство доминанты при подготовке собак.
Конвергенция (сближение). Схождение поступающих по чувствительным путям импульсов возбуждения в одном промежуточном или двигательном центре. В центральной нервной системе в 4–5 раз больше чувствительных путей, чем двигательных. Поэтому к одному и тому же двигательному центру могут подходить импульсы возбуждения по многим путям. Эта особенность прохождения возбуждения по нервным центрам противоположна иррадиации и является основой для концентрации возбуждения в отдельных пунктах коры головного мозга. Конвергенция обеспечивает специализацию условного рефлекса и формирование навыка на сложные и комплексные раздражители.
Окклюзия (закупорка). Проявляется при сочетании особенно сильных раздражителей, дающих эффект меньше суммы величин этих реакций на каждый раздражитель в отдельности. Это свойство противоположно суммации. Окклюзия и пространственная суммация постоянно взаимодействуют между собой. При слабом возбуждении проявляется суммация, при сильных раздражениях - окклюзия. В дрессировке собак ошибочно применение сильных раздражителей для ускорения первоначального условного рефлекса. На громкие команды и сильные подкрепления вырабатываются, как правило, слабые условные рефлексы.
Пластичность (податливость). Способность перестройки функций нервных центров. Сформировавшиеся в процессе эволюции рефлекторные акты, реакции поведения и инстинкты могут перестраиваться, а нервные центры изменять свои функции. Опытами установлено, что перестройка функций нервных центров у животных происходит под регулирующим влиянием коры полушарий головного мозга. Благодаря этому свойству при изменении условий жизни меняется поведение животных, их привычки и навыки: собака и кошка могут мирно уживаться, инстинкт преследования собакой диких животных по следам заменяется реакцией поиска человека по его запаховому следу, вредные привычки, нежелательные связи у собаки могут быть исправлены систематической дрессировкой. Пластичность нервных центров позволяет при дрессировке вырабатывать сложные навыки в виде динамических стереотипов.
Инертность. Нервные центры обладают свойством переходить в состояние возбуждения только при относительно длительном раздражении. Возбудившись, они сохраняют это состояние возбуждения в течение определенного времени. Такое явление И. П. Павлов назвал инертностью. Способность нервных центров длительно сохранять в себе следы возбуждения и торможения, сильно выражена в нервных клетках коры полушарий головного мозга. И. П. Павлов говорил, что если бы у нервных клеток не было инертности, у нас не было бы никакой памяти, никакой выучки, не существовало бы никаких привычек. У животных существует два вида памяти: кратковременная и долговременная. Оба вида памяти обеспечивают возможность выработки у животных условных рефлексов и формирования стойких навыков. Кратковременная память у собаки проявляется в течение нескольких минут, долговременная, или долгосрочная, память - через много дней, месяцев и даже лет. Оба вида памяти у животных выражаются в репродукции образа воспринимаемых отдельных раздражителей или целостного объекта.
Тонус. Нервные центры обладают свойством постоянно находиться в состоянии незначительного возбуждения при относительном рефлекторном покое. Они постоянно посылают импульсы, обеспечивающие тоническое сокращение скелетной мускулатуры. Тонус нервных центров поддерживается действием гуморальных веществ и непрерывным потоком импульсов, поступающих от рецепторов. Огромное значение в поддержании мышечного тонуса имеют нервные центры продолговатого, среднего и промежуточного мозга. Тоническое состояние нервных центров и мышечной системы обеспечивает устойчивую выработку условных рефлексов и хорошую работоспособность собаки. Состояние рабочего тонуса поддерживается правильно организованной дрессировкой, систематической тренировкой и регулярным использованием собаки на службе.
Перечисленные свойства нервных центров обеспечивают их функциональное назначение в нервной системе и организме.

Из книги Арасланов Филимон, Алексеев Алексей, Шигорин Валерий "Дрессировка собак"

Введение

1.1 Свойства нервных центров

1.2 Торможение в ЦНС

2. Патологические нарушения высшей нервной деятельности. Истерия. Неврастения. Психастения.

2.1 Высшая нервная деятельность

2.2 Патологические нарушения высшей нервной деятельности

2.3 Истерия

2.4 Неврастения

2.5 Психастения

Литература

Введение

Цель данной работы - раскрыть классификацию свойств нервных центров, процессов торможения, показать сложность их функционирования и изучения; также раскрыть их роль в функционировании организма, изучить патологические нарушения высшей нервной деятельности, их признаки и причины.

Нервные центры – это совокупность нервных структур, участвующих в регуляции определенных функций организма. Это может быть как и четко очерченная анатомическая структура, так и объединение нейронов по функциональному признаку. Но все они обладают рядом специфических свойств. Обусловленных конструкцией нейронных сетей, структурой и свойствами синапсов.

Проявления функциональной патологии высшей нервной деятельности прежде всего касаются психических функций. Наблюдается ослабление аналитико-синтетической деятельности головного мозга, нарушение долгосрочной и краткосрочной памяти, регуляции эмоций и мотиваций, регуляции общего функционального состояния мозга, межполушарных отношений. Современные представления о механизмах патологии высшей нервной деятельности основываются на учете роли эмоций и памяти; а также гуморальных факторов возникновения патологии.

Знание свойств и патологических нарушений высшей нервной деятельности, помогает правильно осуществлять педагогические воздействия. А также вовремя замечать какие-либо поведенческие отклонения от нормы.

1. Свойства нервных центров. Торможение в ЦНС

1.1 Свойства нервных центров

Рефлекторная деятельность организма во многом определяется общими свойствами нервных центров.

Нервный центр - совокупность структур центральной нервной системы, координированная деятельность которых обеспечивает регуляцию отдельных функций организма или определенный рефлекторный акт. Представление о структурно-функциональной основе нервного центра обусловлено историей развития учения о локализации функций в центральной нервной системе. На смену старым теориям об узкой локализации, или эквипотенциальности, высших отделов головного мозга, в частности коры большого мозга, пришло современное представление о динамической локализации функций, основанное на признании существования четко локализованных ядерных структур нервных центров и менее определенных рассеянных элементов анализаторных систем мозга. При этом с цефализацией нервной системы растут удельный вес и значимость рассеянных элементов нервного центра, внося существенные различия в анатомических и физиологических границах нервного центра. В результате функциональный нервный центр может быть локализован в разных анатомических структурах. Например, дыхательный центр представлен нервными клетками, расположенными в спинном, продолговатом, промежуточном мозге, в коре большого мозга.

Нервные центры имеют ряд общих свойств, что во многом определяется структурой и функцией синаптических образований. Рассматриваемые ниже свойства нервных центров объясняются некоторыми особенностями распространения возбуждения в ЦНС, особыми свойствами химических синапсов и свойствами мембран нервных клеток. Основными свойствами нервных центров являются следующие.

1. Односторонность проведения возбуждения. В рефлекторной дуге, включающей нервные центры, процесс возбуждения распространяется в одном направлении (от входа, афферентных путей к выходу, эфферентным путям). Одностороннее проведение возбуждения характерно не только для химических синапсов, но и для большинства электрических.

2. Наличие синаптической задержки. Время рефлекторной реакции зависит в основном от двух факторов: скорости движения возбуждения по нервным проводникам и времени распространения возбуждения с одной клетки на другую через синапс. При относительно высокой скорости распространения импульса по нервному проводнику основное время рефлекса приходится на синаптическую передачу возбуждения (синаптическая задержка). В нервных клетках высших животных и человека одна синаптическая задержка примерно равна 1 мс. Если учесть, что в реальных рефлекторных дугах имеются десятки последовательных синаптических контактов, становится понятной длительность большинства рефлекторных реакций - десятки миллисекунд.

3. Трансформация ритма возбуждения - это способность нервных центров изменять ритм приходящих на входы нейрона импульсных потоков. Различают несколько механизмов этого явления:

Урежение импульсации может быть связано с более низкой лабильностью нейрона приемника, обусловленной длительной фазой его следовой интерполяризации;

Увеличение импульсации объясняется длительной деполяризацией, достигающей критического уровня, что способствует генерации множественных потенциалов действия, а также с включением нейронов в реверберирующие / циркулирующие/ цепи возбуждения.

Аналогичные механизмы имеют место при рефлекторных ответах, в зависимости от силы и длительности раздражения. Увеличение этих параметров стимуляции с одной стороны приводит к включению большего числа нейронов / за счет присоединения к низкопороговым более высокопороговых нейронов/, с другой стороны – к возникновению суммационно-трансформационных преобразований на синаптических аппаратах центральных вставочных нейронов.

4. Суммация возбуждения. В работе нервных центров значительное место занимают процессы пространственной и временной суммации возбуждения, основным нервным субстратом которой является постсинаптическая мембрана. Процесс пространственной суммации афферентных потоков возбуждения облегчается наличием на мембране нервной клетки сотен и тысяч синаптических контактов. Пространственная суммация связана с такой особенностью распространения возбуждения, как конвергенция. Временную суммацию также называют последовательной. Она играет важную физиологическую роль, потому что многие нейронные процессы имеют ритмический характер и, таким образом, могут суммироваться, давая начало надпороговому возбуждению в нейронных объединениях нервных центров. Процессы временной суммации обусловлены суммацией ВПСП на постсинаптической мембране.

5. Последействие – это продолжение возбуждения нервного центра после прекращения поступления к нему импульсов по афферентным нервным путям, причинами последействия являются:

    длительное существование ВПСП, если ВПСП полисинаптический и высокоамплитудный; в этом случае при одном ВПСП возникает несколько ПД;

    многократные появления следовой деполяризации, что свойственно нейронам ЦНС;

    циркуляция возбуждения по замкнутым нейронным цепям.

Первые две причины действуют недолго – десятки или сотни миллисекунд, третья причина – циркуляция возбуждения – может продолжаться минуты и даже часы. Таким образом, особенность распространения возбуждения обеспечивает другое явление в ЦНС – последействие. Последнее играет важнейшую роль в процессах обучения – кратковременной памяти.

6. Высокая утомляемость. Длительное повторное раздражение рецептивного поля рефлекса приводит к ослаблению рефлекторной реакции вплоть до полного исчезновения, что называется утомлением. Этот процесс связан с деятельностью синапсов - в последних наступает истощение запасов медиатора, уменьшаются энергетические ресурсы, происходит адаптация постсинаптического рецептора к медиатору. Физические рефлексы вызывают довольно быстрое утомление в нервных центрах, в то время как тонические рефлексы могут протекать, не сопровождаясь развитием утомления. Это позволяет в течение длительного времени поддерживать мышечный тонус, что, в свою очередь, через обратную афферентацию поддерживает тонус нервных центров и обеспечивает постоянную импульсацию к соответствующим периферическим эффектам.

7. Тонус, или наличие определенной фоновой активности нервного центра, определяется тем, что в покое в отсутствие специальных внешних раздражений определенное количество нервных клеток находится в состоянии постоянного возбуждения, генерирует фоновые импульсные потоки. Даже во сне в высших отделах мозга остается некоторое количество фоновоактивных нервных клеток, формирующих «сторожевые пункты» и определяющих некоторый тонус соответствующего нервного центра. Тонус объясняется следующим:

Спонтанной активностью нейронов ЦНС;

Гуморальным влиянием циркулирующих в крови биологически активных веществ, влияющих на возбудимость нейронов;

Афферентной импульсацией от различных рефлексогенных зон;

Суммацией миниатюрных потенциалов, возникающих в результате спонтанного выделения квантов медиатора из аксонов, образующих синапсы на нейронах;

Циркуляцией возбуждения в ЦНС.

Значение фоновой активности нервных центров заключается в обеспечении некоторого исходного уровня деятельного состояния центра и эффекторов. Этот уровень может возрастать или снижаться в зависимости от колебаний суммарной активности нейронов нервного центра-регулятора.

8. Пластичность нервных центров – способность нервных элементов к перестройке функциональных свойств. Основные проявления этого свойства следующие: посттетаническая потенциация и депрессия, доминанта, образование временных связей, а в патологических случаях – частичная компенсация нарушенных функций.

Посттетаническая потенциация /синаптическое облегчение/ - это улучшение проведения в синапсах после короткого раздражения афферентных путей. Кратковременная активация увеличивает амплитуду постсинаптических потенциалов. Облегчение наблюдается и во время раздражения / в начале/; в этом случае феномен называют тетанической потенциацией. Степень выраженности облегчения возрастает с увеличением частоты импульсов; облегчение максимально, когда импульсы поступают с интервалов в несколько миллисекунд,

Длительность посттетанической потенциации зависит от свойств синапса и характера раздражения. После одиночных стимулов она выражена слабо, после раздражающей серии потенциация может продолжаться от нескольких минут до нескольких часов.

Значение синаптического облегчения, по-видимому, заключается в том, что оно создает предпосылки улучшения процессов переработки информации на нейронах нервных центров, что крайне важно, например, для обучения в ходе выработки условных рефлексов. Повторное возникновение явлений облегчения в нервном центре может вызвать переход ценра из обычного состояния в доминантное.

Доминантным называется временно господствующий в нервных центрах очаг (или доминантный центр) повышенной возбудимости в центральной нервной системе. По А.А.Ухтомскому, доминантный нервный очаг характеризуется такими свойствами, как повышенная возбудимость, стойкость и инертность возбуждения, способность к суммированию возбуждения.

В доминантном очаге устанавливается определенный уровень стационарного возбуждения, способствующий суммированию ранее подпороговых возбуждений и переводу на оптимальный для данных условий ритм работы, когда этот очаг становится наиболее чувствительным. Доминирующее значение такого очага (нервного центра) определяет его угнетающее влияние на другие соседние очаги возбуждения. Доминантный очаг возбуждения «притягивает» к себе возбуждение других возбужденных зон (нервных центров). Принцип доминанты определяет формирование главенствующего (активирующего) возбужденного нервного центра в тесном соответствии с ведущими мотивами, потребностями организма в конкретный момент времени.

Если раздражение продолжается, то в химических синапсах может наступить депрессия, по-видимому, в следствие истощения медиатора.

Компенсация нарушенных функций после повреждения того или иного центра – результат проявления пластичности ЦНС.

9. Большая чувствительность ЦНС к изменениям внутренней среды: например, к изменению содержания глюкозы в крови, газового состава крови, температуры, к вводимым с лечебной целью различным фармакологическим препаратам. В первую очередь реагируют синапсы нейронов. Особенно чувствительны нейроны ЦНС к недостатку глюкозы и кислорода. При снижении содержания глюкозы в 2 раза ниже нормы могут возникнуть судороги. Тяжелые последствия для ЦНС вызывает недостаток кислорода в крови – от нарушений функций мозга до полной гибели нейронов.

10. Конвергенция. Нервные центры высших отделов мозга являются мощными коллекторами, собирающими разнородную афферентную информацию. Количественное соотношение периферических рецепторных и промежуточных центральных нейронов (10:1) предполагает значительную конвергенцию («сходимость») разномодальных сенсорных посылок на одни и те же центральные нейроны. На это указывают прямые исследования центральных нейронов: в нервном центре имеется значительное количество поливалентных, полисенсорных нервных клеток, реагирующих на разномодальные стимулы (свет, звук, механические раздражения и т. д.). Конвергенция на клетках нервного центра разных афферентных входов предопределяет важные интегративные, перерабатывающие информацию функции центральных нейронов, т. е. высокий уровень интеграционных функций. Конвергенция нервных сигналов на уровне эфферентного звена рефлекторной дуги определяет физиологический механизм принципа «общего конечного пути» по Ч. Шеррингтону.

11. Интеграция в нервных центрах. Важные интегративные функции клеток нервных центров ассоциируются с интегративными процессами на системном уровне в плане образования функциональных объединений отдельных нервных центров в целях осуществления сложных координированных приспособительных целостных реакций организма (сложные адаптивные поведенческие акты).

Координация в деятельности нервных центров обеспечивается специфическими закономерностями во взаимодействии процессов возбуждения и торможения. При этом торможению отводится часто ведущая роль в достижении координационной деятельности центральной нервной системы.

1.2 Торможение в ЦНС

Торможение - это физиологический процесс в центральной нервной системе результатом которого является задержка возбуждения. Торможение не может распространяться подобно возбуждению, являясь местным процессом. Торможение возникает в момент встречи двух возбуждений, одно из которых является тормозящим, а другое тормозимым.

Процесс торможения впервые был показан в 1862 г. русским физиологом И. М. Сеченовым. У лягушки производился разрезголовного мозга на уровне зрительных бугров с удалением больших полушарий мозга. Измерялось время рефлекса отдергивания задней лапы при погружении ее в растворсерной кислоты(метод Тюрка). При наложении на разрез зрительных бугров кристалликаповаренной соливремя рефлекса увеличивалось. Кристаллик соли, раздражая зрительные бугры, вызывает возбуждение, которое спускается к спинномозговым центрам и тормозит их деятельность.

Выделяют первичное и вторичное торможение. Первичное торможение наблюдается при активации специальных тормозных структур, действующих на тормозную клетку и вызывающих в ней торможение как первичный процесс, без предварительного возбуждения. К первичному торможению относятся пресинаптическое, постсинаптическое и, разновидность последнего, возвратное и латеральное торможение.

Постсинаптическое торможение (лат. post позади, после чего-либо + греч. sinapsis соприкосновение, соединение) - нервный процесс, обусловленный действием на постсинаптическую мембрану специфических тормозных медиаторов (глицин, гаммааминомаслянная кислота), выделяемых специализированными пресинаптическими нервными окончаниями. Медиатор, выделяемый ими, изменяет свойства постсинаптической мембраны, что вызывает подавление способности клетки генерировать возбуждение. При этом происходит кратковременное повышение проницаемости постсинаптической мембраны к ионам К+ или CI, вызывающее снижение ее входного электрического сопротивления и генерацию тормозного постсинаптического потенциала (ТПСП). Возникновение ТПСП в ответ на афферентное раздражение обязательно связано с включением в тормозной процесс дополнительного звена - тормозного интернейрона, аксональные окончания которого выделяют тормозной медиатор. Специфика тормозных постсинаптических эффектов впервые была изучена на мотонейронах млекопитающих (Д. Экклс, 1951). В дальнейшем первичные ТПСП были зарегистрированы в промежуточных нейронах спинного и продолговатого мозга, в нейронах ретикулярной формации, коры больших полушарий, мозжечка и таламических ядер теплокровных животных.

Известно, что при возбуждении центра сгибателей одной из конечностей центр ее разгибателей тормозится и наоборот. Д. Экклс выяснил механизм этого явления в следующем опыте. Он раздражал афферентный нерв, вызывающий возбуждение мотонейрона, иннервирующего мышцу - разгибатель.

Нервные импульсы, дойдя до афферентного нейрона в спинномозговом ганглии, направляются по его аксону в спинном мозге по двум путям: к мотонейрону, иннервирующему мышцу - разгибатель, возбуждая ее и по коллатералям к промежуточному тормозному нейрону, аксон которого контактирует с мотонейроном иннервирующим мышцу - сгибатель, вызывая таким образом торможение антагонистической мышцы. Этот вид торможения был обнаружении в промежуточных нейронах всех уровней центральной нервной системы при взаимодействии антагонистических центров. Он был назван поступательным постсинаптическим торможением. Этот вид торможения координирует, распределяет процессы возбуждения и торможения между нервными центрами.

Возвратное (антидромное) постсинаптическое торможение (греч. antidromeo бежать в противоположном направлении) - процесс регуляции нервными клетками интенсивности поступающих к ним сигналов по принципу отрицательной обратной связи. Он заключается в том, что коллатерали аксонов нервной клетки устанавливают синаптические контакты со специальными вставочными нейронами (клетки Реншоу), роль которых заключается в воздействии на нейроны, конвергирующие на клетке, посылающей эти аксонные коллатерали. По такому принципу осуществляется торможение мотонейронов.

Параллельное торможение – возбуждение блокирует само себя за счет дивергенции по коллатерали с включением тормозной клетки на своем пути и возвратом импульсов к нейрону, который активировался этим же нейроном.

Латеральное постсинаптическое торможение. Тормозные вставочные нейроны соединены таким образом, что они активируются импульсами от возбужденного центра и влияют на соседние клетки с такими же функциями. В результате в этих соседних клетках развивается очень глубокое торможение. Такого типа торможение называется латеральным потому, что образующаяся зона торможения находится «сбоку» по отношению к возбужденному нейрону и инициируется им. Латеральное торможение играет особенно важную роль в афферентных системах. Латеральное торможение может образовать тормозную зону, которая окружает возбуждающие нейроны.

Торможение реципрокное (лат. reciprocus - взаимный) - нервный процесс, основанный на том, что одни и те же афферентные пути, через которые осуществляется возбуждение одной группы нервных клеток, обеспечивают через посредство вставочных нейронов торможение других групп клеток. Реципрокные отношения возбуждения и торможения в ЦНС были открыты и продемонстрированы Н.Е. Введенским: раздражение кожи на задней лапке у лягушки вызывает ее сгибание и торможение сгибания или разгибания на противоположной стороне. Взаимодействие возбуждения и торможения является общим свойством всей нервной системы и обнаруживается как в головном, так и в спинном мозге. Экспериментально доказано, что нормальное выполнение каждого естественного двигательного акта основано на взаимодействии возбуждения и торможения на одних и тех же нейронах ЦНС.

Пресинаптическое торможение (лат. praе -впереди чего-либо + греч. sunapsis соприкосновение, соединение) - частный случай синаптических тормозных процессов, проявляющихся в подавлении активности нейрона в результате уменьшения эффективности действия возбуждающих синапсов еще на пресинаптическом звене путем угнетения процесса высвобождения медиатора возбуждающими нервными окончаниями. В этом случае свойства постсинаптической мембраны не подвергаются каким-либо изменениям. Пресинаптическое торможение осуществляется посредством специальных тормозных интернейронов. Его структурной основой являются аксо-аксональные синапсы, образованные терминалиями аксонов тормозных интернейронов и аксональными окончаниями возбуждающих нейронов.

Характерной особенностью пресинаптической деполяризации является замедленное развитие и большая длительность (несколько сотен миллисекунд), даже после одиночного афферентного импульса.

Функциональное значение пресинаптического торможения, охватывающего пресинаптические терминали, по которым поступают афферентные импульсы, заключается в ограничении поступления к нервным центрам афферентной импульсации. Пресинаптическое торможение в первую очередь блокирует слабые асинхронные афферентные сигналы и пропускает более сильные, следовательно, оно служит механизмом выделения, вычленения более интенсивных афферентных импульсов из общего потока. Это имеет огромное приспособительное значение для организма, так как из всех афферентных сигналов, идущих к нервным центрам, выделяются самые главные, самые необходимые для данного конкретного времени. Благодаря этому нервные центры, нервная система в целом освобождается от переработки менее существенной информации.

Вторичное торможение - торможение осуществляющееся теми же нервными структурами, в которых происходит возбуждение. Этот нервный процесс подробно изложен в работах Н.Е. Введенского (1886, 1901г.г.).

Общее центральное торможение - нервный процесс, развивающийся при любой рефлекторной деятельности и захватывавающий почти всю ЦНС, включая центры головного мозга. Общее центральное торможение обычно проявляется раньше возникновения какой-либо двигательной реакции. Оно может проявляться при такой малой силе раздражения при которой двигательный эффект отсутствует. Такого вида торможение было впервые описано И.С. Беритовым (1937). Оно обеспечивает концентрацию возбуждения других рефлекторных или поведенческих актов, которые могли бы возникнуть под влиянием раздражений. Важная роль в создании общего центрального торможения принадлежит желатинозной субстанции спинного мозга.

Некоторые исследователи выделяют еще один вид торможения - торможение вслед за возбуждением. Оно развивается в нейронах после окончания возбуждения в результате сильной следовой гиперполяризации мембраны (постсинаптической).

Оба известных вида торможения со всеми их разновидностями выполняют охранительную роль. Отсутствие торможения привело бы к истощению медиаторов в аксонах нейронов и прекращению деятельности ЦНС.

Еще торможение играет важную роль в обработке поступающей в ЦНС информации. Особенно ярко выражена эта роль у пресинаптического торможения.

Торможение является важным фактором обеспечения координационной деятельности ЦНС.

2. Патологические нарушения высшей нервной деятельности. Истерия. Неврастения. Психастения

2.1 Высшая нервная деятельность

Высшая нервная деятельность - сложная форма жизнедеятельности, обеспечивающая индивидуальное поведенческое приспособление человека и высших животных к изменяющимся условиям окружающей среды. Понятие "высшая нервная деятельность" введено И. П. Павловым как противопоставление понятию "низшая нервная деятельность", которая осуществляется на основе врождённых механизмов и направлена в основном на поддержание гомеостаза организма в процессе его жизнедеятельности. Нервные связи, лежащие в основе высшей нервной деятельности, формируются в процессе индивидуальной жизни организма и способствуют обогащению приобретённого опыта.

Высшая нервная деятельность человека, её характер в значительной степени зависят от индивидуальных особенностей нервной системы. Совокупность этих специфических черт обусловлена наследственными особенностями индивидуума, его жизненным опытом и традиционно называется типом высшей нервной деятельности. При определении такого типа по И. П. Павлову используют следующие свойства нервной системы: силу процессов возбуждения и торможения, их взаимную уравновешенность (другими словами, соотношение силы торможения и силы возбуждения) и подвижность (т. е. скорость, с которой возбуждение может смениться торможением, и наоборот).

И. П. Павлов выделил четыре основных типа высшей нервной деятельности:

Тип сильный, но неуравновешенный, характеризующийся преобладанием процессов возбуждения над торможением ("безудержный" тип) и обладающий холерическим темпераментом (в соответствии с делением типов людей по темпераментам, предложенным еще Гиппократом);

Тип сильный, уравновешенный, с большой подвижностью нервных процессов ("живой", подвижный тип), совпадающий с сангвиническим темпераментом;

Тип сильный, уравновешенный, с малой подвижностью нервных процессов ("спокойный", малоподвижный, инертный тип), который соответствует флегматическому темпераменту;

Тип слабый, характеризующийся слабым развитием как возбуждения, так и тормозных процессов, относится к меланхолическому темпераменту.

Тип нервной системы определяет степень приспособленности организма к условиям окружающей среды. Так, у животных с сильным уравновешенным типом нервной системы трудно вызвать патологическое расстройство высшей нервной деятельности - невроз, или срыв (по терминологии И. П. Павлова). Особенно частым "поставщиком" различных невротических состояний является слабый тип нервной системы. Причинами возникновения патологических нарушений высшей нервной деятельности могут быть также острые или хронические отравления различными токсическими веществами, инфекции, нарушения функции отдельных органов или систем (дыхательной, пищеварительной, эндокринной и др.), неблагоприятные условия окружающей среды и т. д.

2.2. К патологическим изменениям высшей нервной деятельности

К патологическим изменениям высшей нервной деятельности следует относить длительные хронические ее нарушения, которые могут быть связаны как с органическими структурными повреждениями нервных клеток, так и с функциональными расстройствами их деятельности. Функциональные расстройства высшей нервной деятельности называют неврозами. Длительные функциональные нарушения высшей нервной деятельности могут затем переходить в органические, структурные (А. О. Долин, С. А. Долина, 1972) и становятся необратимыми.

Определение понятия нервного центра

Нервный центр - это совокупность связанных между собой нейронов, совместно выполняющих определённую функцию путём преобразования входящего возбуждения в выходящее с изменёнными характеристиками.

Данное определение содержит 7 критериев нервного центра, найдите и назовите их.

Суперкраткое определение: Нервный центр - это "полисинаптический трансформатор возбуждения".

Нервный центр - это та нервная структура, которая связывает сенсорную систему с эффекторной и преобразует сенсорное возбуждение в эффекторное или модулирующее.

Нервный центр - это многозначное понятие.

Анатомический подход: нервный центр - это совокупность сходных нервных клеток, выполняющих общую функцию и компактно расположенных в определенном участке ЦНС.
Здесь используется морфологический подход, т.е. нервные центры определяются по строению. Нервные клетки, образующие такой нервный центр, соединены в локальные компактные структуры: нервные узлы (ганглии) в периферической нервной системе или мозговые ядра в центральной нервной системе.

Физиологический подход (по деятельности) : нерный центр - это система взаимосвязанных клеток, которые объединяются для выполнения определённой функции, а физически могут находится в различных местах нервной системы.
Такое определение созвучно понятию "функциональной системы" , которое было предложено П.К. Анохиным. Но если функциональная система подразумевает временное объединение нейронов, то нервный центр - это обычно устойчивое образование. По П.К. Анохину различные анатомические нервные центры при необходимости могут на время объединяться в функциональную систему для получения определенного полезного результата.

Нервные центры биорегуляции . В функциональном отношении нервный центр также может представлять собой сложное объединение нескольких анатомических нервных центров, расположенных в разных отделах ЦНС и обусловливающих сложные рефлекторные акты. В этом смысле говорят о "пищевом нервной центре", "болевом нервном центре" и т.п. Это центры регуляции функций организма.

Понятие нерный центр может также пересекаться с понятием доминанты . Доминанта - это устойчивый очаг возбуждения, подчиняющий себе другие очаги . Кроме единичного очага возбуждения в состав доминанты также могут входить и другие связанные с ним очаги. Создатель учения о доминанте А.А. Ухтомский называл такие объединения возбуждённых очагов "созвездиями" ("констелляциями").

Эволюция выбирает путь концентрации нервных элементов и увеличение количества связей между ними. Поэтому из рассеянных диффузно нервных клеток образуются компактные нервные центры.

Линия эволюционного развития структуры нервной системы

1) Отдельные нервные клетки соединены примерно равными связями.
2) Нервные цепи - нервные клетки соединены последовательно более сильными связями, образуя предопределённый путь для движения возбуждения от одного пункта к другому.
3) Нервные сети - нервные клетки соединены в виде решеток с неравноценными связями.
4) Нервные узлы (ганглии) - нервные клетки собраны в компактные структуры, соединёнными между собой продолными связями (коннективами) и поперечными (комиссурами) в виде лестницы.
5) Нервная трубка - нервные клетки расположены в виде сплошных слоёв, закрученных в виде трубы.
6) Нервные ядра - обособленные нейронные структуры из тесно связанных сходных между собой нейронов в составе нервной трубки, специализирующиеся на определённых функциях.
7) Нейронные поля - зоны коры головного мозга. Они состоят из вертикальных колонок, в которые сгруппированы нейроны.

Свойства нервных центров

Полисинаптические связи . Это означает, что каждый нейрон имеет множественные контакты с другими нейронами. Наличие полисинаптических (множественных) контактов между нейронами нервного центра является основным свойством нервных центров, из которого исходят прочие свойства, как следствие полисинаптических связей между нейронами. Уже на уровне нервной цепи синапсами обеспечивается одностороннее проведение возбуждения. В нервном же центре за счёт множественных контактов между нейронами возбуждение может «гулять по кругу», не выходя за пределы нервного центра, а также его можно изменять .

Наличие входов и выходов для возбуждения . В нервном центре можно различить приносящие (афферентные ) входы и выносящие (эфферентные ) выходы.

Одно­стороннее проведение возбуждения. Это свойство отдельного синапса и нервной цепи. В нервном центре может быть множество путей между входами и выходами. За счёт обратных связей возможно возвратное движение возбуждения. Но это происходит внутри нервного центра. А если рассматривать нервный центр целиком, то возбуждение приходит внего по приходящим путям, а выходит по эфферентным выходящим. Таким образом, можно говорить об одностороннем проведении возбуждения нервным центром.
З
адержка ( замедление ) проведения возбуждения . В нервных центрах возникает задержка в проведении возбуждения, так называемый латентный (скрытый) период. Задержка обусловлена синаптической передачей возбуждения. Чем больше синапсов участвует в проведении возбуждения, тем более длительной получается задержка.
Суммация возбуждения . Если одновременно подавать возбуждение на несколько входов нервного центра, то на выходе можно получить более сильное возбуждение. Свойством суммации обладает и отдельный нейрон за счёт суммации локальных потенциалов.
Трансформация (преобразование) входящего возбуждения в иное - выходящее . Нервный центр осуществляет изменение , перекодирование поступающих в него потоков импульсов. Трансформация возбуждения - это, пожалуй, самое главное свойство нервного центра. Наиболее известное свойство из этого ряда – трансформация ритма . Нервный центр получает на входе один ритм импульсации, а на выходе дает другой (более медленный или более частый).
Последействие (облегчение) . Это означает, что после возбуждения нервного центра он некоторое время ещё сохраняет повышенную возбудимость. Поэтому последующее возбуждение даёт более сильный эффект и получение эффекта от работы нервного центра облегчено.
Утомляемость и низкая лабильность. Лабильность - это предельная частота импульсации, доступная данной нервной структуре. Нервные центры могут пропускать через себя потоки возбуждения с ограниченной частотой импульсации вследствие задержки передачи возбуждения, которая происходит в многочисленных синапсах. Повышенная утомляемость нервных центров объясняется высокой утомляемостью синапсов и ухудшением метаболизма (обменнных процессов) в нейронах после нагрузки.
Тонус . Это означает, что даже без внешнего воздействия нервный центр сохраняет определённый уровень возбудимости и самостоятельно поддерживает у себя определённый уровень возбуждения.
Чувствительность к кис­лороду и к действию биологически активных
веществ (нейротропных). Это создаёт предпосылки к хеморегуляции - химическому управлению деятельностью нервного центра. Например, усиление или ослабление кровоснабжения изменяет работу нервных центров.
В озбудимость ( воз­буждение ) . Это способность нервных центров переходить в более возбуждённое состояние, например, при внешнем воздействии на них (стимуляции) или под влиянием других нервных центров.

Торможение ("тормозимость") . Это способность нервных центров переходить в менее возбуждённое состояние, например, при внешнем воздействии на них или под влиянием других нервных центров.
Иррадиация возбуждения
. Это "растекание возбуждения" по нервному центру, распространение возбуждения на новые участки от места его первоначального появления.
Конвергенция (схождение) . Это объединение двух или нескольких входящих потоков возбуждения в один выходящий поток. Т.е. в нервный центр входит больше потоков возбуждения, че выходит из него.
Дивергенция (расхождение) . Это разделение входящего потока возбуждения на несколько выходящих потоков. За счёт дивергенции получается, что в нервный центр входит меньше потоков возбуждения, чем выходит из него.

Окклюзия (запирание) . Это блокирование одним из входящих потоков возбуждения другого входящего потока. В результате выходящий поток возбуждения получается слабее, чем сумма этих входящих потоков.
Индукция (отдача) . Это наведение противоволожного (возбуждённого или тормозного) состояния на другие нервные центры или на себя самого. Для понятия индукции очень важно, что данной структурой наводится именно противоположное состояние, а не то, в котором находится она сама. Так, возбуждённая структура индуцирует торможение, а заторможенная - возбуждение.

Автоматия (спонтанная активность, автономность) нервных центров. Это означает, что даже без внешнего воздействия нервный центр может самостоятельно порождать возбуждение на выходе или поддерживать свой тонус (как бы развлекать сам себя). Объясняется это свойство нервного центра существованием в нём специальных нейронов-пейсмекеров (водителей ритма). В них самопроизвольно возникает возбуждение, независимо от работы их афферентных входов. Таким образом, в нервных центрах может происходить периодическая или постоянная генерация (порождение) нервных импульсов, которые возникают даже при отсутствии входящего возбуждения. Самопроизвольная импульсация пейсмекеров обусловлена колебаниями процессов метаболизма в нейронах и действием на них гуморальных факторов.
Реципрокные (взаимоисключающие) отношения . Это означает, что возбуждение одного нейрона (или центра) подавляет работу другого, связанного с ним, нейрона (или центра).
П ластичность . Это способность перестраивать свою структуру и\или деятельность под влиянием предыдущей деятельности. Пластичность - это одно из важнейших свойств биологических систем, которое отличает их от технических систем.

Адаптация. Нервный центр способен приспосабливаться к новой нагрузке и новым условиям работы.

Компенса­торные возможности. При частичном повреждении нервный центр продолжает свою деятельность за счёт сохранившихся нейронов. Для этого он использует свои способности к пластичности и адаптации.

Основные принципы в работе нервных центров

Принцип общего конечного пути ("воронка Шеррингтона"). Как правило, центры имеют больше афферентных входов, чем эфферентных выходов. Поэтому входящие потоки возбуждения конкурируют за выход, имея общий конечный путь. В итоге количество афферентных входов превышает количество эфферентных выходов.
Принцип обратной связи. Это означает, что последующий элемент (нейрон или центр) в последовательной цепи взаимосвязанных элементов влияет на состояние предыдущего элемента. Обратная связь позволяет произвести отладку взаимодействия между элементами и добиться их оптимального взаимодействия для достижения предельно возможного положительного результата в работе системы, состоящей из этих элементов.
Принцип доминан­ты. Это означает, что нервный путь или нервный центр наиболее активный получает преимущество по отношению к другим путям или центрам и начинает доминировать, господствовать над ними. Он тормозит их деятельность и перехватывает их возбуждение, чтобы усилить своё.
Принцип иерархии (соподчинения) . Это означает, что одни элементы (нейроны и/или центры) подчиняются влиянию других элементов. Как правило, вышерасположенные центры подчиняют себе нижерасположенные центры.

Принцип пластичности. Это означает, что нервный центр перестраивает свою деятельность, приспосабливаясь к наилучшему выполнению своей функции для достижения общего конечного системного результата. Пластичность является важнейшей отличительной особенностью биосистем по сравнению с техническими системами.

Низшие нервные центры

Низшие нервные центры играют важную роль в работе любой сенсорной системы . Они являются одним из необходимых элементов сенсорной системы, по которому это понятие отличается от понятия "анализатор". Нервные центры не просто переключают возбуждение с одних нейронов на другие с помощью вставочных нейронов, т.е. выполняют "релейную" функцию, как это считалось ранее. Важно понять, что нервные центры занимаются трансформацией поступающего в них возбуждения, т.е. его преобразованием, или перекодированием . В результате этой трансформации входящее афферентное возбуждение превращается в выходящее эфферентное , отличающееся от входящего.

Работа (функции) низших нервных центров

1. Трансформация возбуждения , т.е.преобразование входящего потока сенсорного возбуждения в новый поток - выходящий. Выходящий поток может сильно отличаться от входящего, например, в том случае, если он должен управлять мышцами, а не строить нервную модель раздражения в виде сенсорного образа.

Виды трансформации возбуждения в нервном центре

1. Усиление.
2. Ослабление.
3. Блокировка.
4. Изменение паттерна (узора, характера).

5. Контрастирование границ в пространстве . Обычно оно достигается с помощью латерального (бокового) торможения. Латеральное торможение усиливает возбуждение по контуру раздражителя и рецептивного поля и ослабляет возбуждение в центральной области рецептивного поля.

6. Контрастирование границ во времени . Происходит за счёт преобразования тонического (постоянного) возбуждения в кратковременное фазическое . Таким способом отмечаются начало и конец действия раздражителя.

2. Распределение входящих потоков сенсорного возбуждения по выходящим потокам, которые направляются в различные нервные структуры. Эта функция нервного центра наглядно показана с помощью нашей схемы "Пути сенсорного возбуждения ".

Виды распределения возбуждения в нервном центре

1. Конвергенция (схождение).
2. Дивергенция (расхождение).
3. Окклюзия (запирание).
4. Иррадиация (распространение).

3. Детекция . С помощью детекции выделяются раздражители с определёнными характеристиками за счёт срабатывания специальных нейронов-детекторов с соответствующими рецептивными полями. На любые другие раздражители, неадекватные для них, такие нейроны-детекторы не срабатывают, т.к. просто не возбуждаются такими стимулами.

Нервные центры обладают рядом характерных свойств , определяемых особенностями синаптического проведения нервных импульсов и струкурой нейронных цепей, образующих эти центры.

  1. . В нервном волокне импульсы могут проводиться в обоих направлениях. В центральной же нервной системе возбуждение может распространяться только в одном направлении: от рецепторного нейрона через промежуточные нейроны к эффекторному. Это явление получило название закона одностороннего проведения возбуждения в нервных центрах. Оно определяет направленность движения нервных импульсов, характерную для рефлекторной дуги.
  2. . В нервных центрах проведение возбуждения совершается значительно медленнее, чем в нервных волокнах. Этим объясняется относительная длительность времени рефлекса, т.е. времени от начала раздражения рецептора до появления ответной реакции. Это время называют также латентным периодом рефлекса.
  3. Зависимость рефлекторного ответа от силы и длительности раздражения . Рефлекторный ответ зависит от силы и длительности раздражения рецепторов. При усилении раздражения рецептивного поля увеличивается число возбужденных рецепторов и нервных волокон, по которым импульсы поступают в нервный центр, а следовательно, возрастает и число промежуточных и эффекторных нейронов, вовлекаемых в реакцию. Вместе с тем увеличивается частота нервных импульсов, возникающих в рецепторах и соответственно в каждом из нейронов, что также приводит к усилению рефлекса (усилению сокращения мышц, усилению секреции железы и т. д.). Увеличение продолжительности раздражения даже при постоянстве силы последнего в ряде случаев также ведет к усилению рефлекса за счёт вовлечения в реакцию новых нервных элементов.
  4. . Суммация возбуждений является характерным свойством нервных центров, впервые описанным И. М. Сеченовым в 1803 г. Она проявляется в том, что сочетание двух или нескольких раздражений перифорических рецепторов или афферентных нервов вызывает рефлекс, тогда как каждое из этих раздражений в отдельности недостаточно для вызова рефлекторной реакции. Различают два вида суммации: последовательную (временную) и пространственную.
  5. . Нервные центры способны трансформировать, т. е. изменять, ритм приходящих к ним импульсов. Поэтому частота импульсов, посылаемых центральной нервной системой к рабочему органу, относительно независима от частоты раздражении. В особенности резко проявляется трасформация ритма возбуждений нервными центрами при раздражении их одиночными стимулами.
  6. . Рефлекторные акты заканчиваются не одновременно с прекращением вызвавшего их раздражения, а через некоторый, иногда сравнительно длительный, период. Это явление получило название рефлекторного последействия.
  7. . В отличие от нервных волокон нервные центры легко утомляемы. Утомление нервного центра проявляется в постепенном снижении и в конечном итоге полном прекращении рефлекторного ответа при продолжительном раздражении афферентных нернных волокон.
  8. . Электрофизиологические исследования показывают, что не толькопри осуществлении того или иного рефлекса, но и в состоянии относительного покоя из нервных центров на периферию к соответствующим органам и тканям поступают разряды нервных импульсов.
  9. Зависимость функций нервных центров от снабжения их кислородом . Нервные клетки отличаются интенсивным потреблением кислорода. Так, 100 г ткани головного мозга собаки в 22 раза больше потребляют кислорода, чем 100 г мышечной ткани, находящейся в покое, и в 10 раз больше, чем 100 г печени. Мозг человека поглощает приблизительно 40-50 мл кислорода в минуту, что составляет примерно 1/6-1/8 часть всего количества кислорода, потребляемого телом в состоянии покоя. Потребляя большие количества кислорода, нервные клетки высокочувствительны к его недостатку. Поэтому уменьшение доставки кислорода к центральной нервной системе быстро влечет за собой нарушения функций центров. Этим объясняется тот факт, что полное или частичное прекращение кровообращения мозга (например, при тромбозе или разрыве кровеносного сосуда) ведет к тяжелым расстройствам деятельности нервной системы и к гибели нервных элементов. Даже кратковременная остановка мозгового кровообращения или кратковременное резкое падение явления в кровеносных сосудах головного мозга вызывает у человека немедленную потерю сознания. Особенно сильно страдают при прекращении кровоснабжения клетки коры больших полушарий головного мозга: уже через 5-6 минут они подвергаются необратимым изменениям и погибают. Центры ствола мозга менее чувствительны к недостатку кислорода: функция восстанавливается даже после 15-20 минут полного прекращения кровообращения. Центры спинного мозга еще более выносливы: функция может восстанавливаться даже через 20-30 минут полного кращения притока к ним крови. При гипотермии, т. е. искусственном понижении температуры тела, когда снижается обмен веществ организма, центральная нервная система дольше переносит недостаток кислорода.
  10. . Явление центрального торможения было открыто И. М. Сеченовым в 1862 г. Основной его опыт состоял в следующем. У лягушки делали разрез головного мозга на уровне зрительных бугров и удаляли большие полушария. После этого измеряли время рефлекса отдергивания задних лапок при погружении их в раствор серной кисл (методика Тюрка).

Специфическое действие некоторых ядов на центральную нервную систему

Нервные клетки и синапсы обладают избирательной чувствительностью к некоторым ядам. Поэтому последние называют нервными ядами. К их числу относится очень большое количество веществ самого различного химического строения: стрихнин, морфин, фенамин, кардиазол, наркотические вещества (эфир, хлороформ, барбитураты и пр.), алкоголь и многие другие.

Практически весьма важно, что некоторые вещества действуют преимущественно на определенные нервные центры. Так, апоморфин влияет более резко на рвотный, а лобелин - на дыхательный центр. Имеются вещества, действующие преимущественно на передачу возбуждения в ганглиях (ганглиоблокаторы).

Часто применяемый в физиологическом эксперименте стрихнин блокирует функцию тормозных синапсов и потому вызывает резкое повышение возбудимости центральной нервной системы, особенно спинного мозга. Вследствие этого животные, отравленные стрихнином, реагируют бурными рефлекторными судорогами всех скелетных мышц на любое раздражение.

Избирательная чувствительность к некоторым ядам нейронов и синапсов, локализующихся в отдельных участках центральной нервной системы, по-видимо указывает на своеобразие химических процессов, протекающих в них.

Имеются яды, влияющие на отдельные области больших полушарий, например кардиазол действует избирательно на двигательную зону больших полушарий, мескалин (алкалоид из мексиканского кактуса) оказывает влияние на зрительные центры головного мозга.

В последние два десятилетия обнаружены вещества, оказывающие значительное влияние на высшую нервную деятельность. Их изучением занимается специальность фармакологии - психофармакология.

Нервным центром называют функционально связанную совокупность нейронов, расположенных в одной или нескольких структурах центральной нервной системы и обеспечивающих осуществление регуляции определенных функций организма.

Основные общие свойства нервных центров определяются тремя главными факторами:

1) свойствами нервных клеток, входящих в состав центра,
2) особенностями структурно-функциональных связей нейронов,
3) свойствами центральных синапсов.

Различают Основные свойства нервных центров:

1. 1. Одностороннее проведение возбуждения. В ЦНС – в ее нервных центрах, внутри рефлекторной дуги и нейронных цепей возбуждение, как правило, идет в одном направлении – от пресинаптической мембраны к постсинаптической, т. е. вдоль рефлекторной дуги от афферентного нейрона к эфферентному. Это свойство связано со свойствами синапсов.

2. 2. Замедление проведения возбуждения в нервных центрах, или центральная задержка. Она обусловлена медленным проведением нервных импульсов через синапсы, так как затрачивается время на следующие выделения медиатора из пресинаптических везикул, выброс его в синаптическую щель и генерация возбуждающего постсинаптического потенциала (ВПСП).

3. 3. Суммация возбуждения и суммация торможения. Принято выделять два вида суммации – временную и пространственную. Временная, или последовательная, суммация проявляется в том, что в области постсинаптической мембраны происходит суммация следов возбуждения во времени, т. е. на нейроне в области его аксонного холмика происходит интеграция событий, разыгрывающихся на отдельных участках мембраны нейрона на определенном отрезке времени. Пространственная суммация возбуждения проявляется в суммировании на аксонном холмике нейрона постсинаптических потенциалов, которые возникают одновременно в различных точках этого нейрона в ответ на приходящие от других нейронов потенциалы действия. Даже если каждый из нейронов в отдельности вызывает лишь подпороговые ВПСП, при синхроннном их появлении они будут способны довести мембранный потенциал в области аксонного холмика нейрона до критического уровня деполяризации и тем самым вызывать возбуждение нейрона. Все сказанное в полной мере относится и к явлению суммации торможения.

4. 4. Явление окклюзии (или закупорки) отражает эффект взаимодействия между собой двух импульсных потоков, при котором имеет место взаимное угнетение рефлекторных реакций. Суммарная ответная реакция (рефлекс), вызываемая одновременным воздействием двух потоков, меньше, чем сумма двух реакций, возникающих при действии каждого из этих двух потоков в отдельности.

5. 5. Явление облегчения, которое по своему внешнему проявлению противоположно окклюзии. 0но проявляется в том, что при совместном раздражениим рецептивных полей двух рефлексов наблюдается усиление реакций организма на действие двух раздражителей одновременно.

6. 6. Трансформация ритма возбуждения. Это одно из свойств нейрона как компонента нейронной цепи, которое обнаруживается в процессе проведения возбуждения по нейронным цепям. Трансформация ритма возбуждения заключается в способности нейрона изменять ритм приходящих импульсов..

7. 7. Последействие. Это одно из свойств, характерных для нейронных цепей. Оно заключается в том, что реакция нейрона (в виде генерации одиночных ПД или пачек ПД) на приходящий к нему импульс продолжается длительное время.

8. 8. Высокая утомляемость нервных центров. Это свойство характерно для нейронных цепей, в том числе для рефлекторных дуг. С одной стороны, оно проявляется в том, что в нейронных цепях, как и в других многозвеньевых системах, может развиваться утомление, которое проявляется в постепенном снижении (вплоть до полного прекращения) рефлекторного ответа при продолжительном раздражении афферентных нейронов.

9. 9. Тонус нервных центров. Для многих нейронных объединений, или нервных центров, характерна фоновая активность, т. е. генерация нервных импульсов с определенной частотой на протяжении длительного времени. Такая активность обусловлена не наличием в составе данного объединения нейрона-пейсмкера (фоновоактивного нейрона), а постоянным возбуждением афферентного нейрона благодаря непрерывному раздражению сенсорных рецепторов. Тонус нервных центров обеспечивает постоянную импульсацию к соответствующим периферическим системам, а также постоянное межцентральное взаимодействие.

10. 10. Пластичность нервных центров – это их способность к перестройке функциональных свойств и, в определенной степени, функций под влиянием длительных внешних воздействий или при очаговых повреждениях мозга. Посттравматическая пластичность нейронных объединений выполняет компенсаторную (восстановительную) функцию, а пластичность, вызванная длительным афферентным раздражением, – приспособительную функцию.

№6Нервный центр. Иррадиация, индукция и концентрация процесса возбуж. Их изменения в процессе онтогенеза .Рефлексы головного мозга являются главными механизмами приспособления организма животного и человека к внешней среде.
Рефлексы отличаются следующими особенностями:
1. они всегда начинаются с нервного возбуждения, вызванного каким-либо
раздражителем в том или другом рецепторе;
2. они всегда заканчиваются определенной реакцией организма на соответ-
ствующеераздражение. Процессы возбуждения и торможения протекают и функционируют в соответствии со своими определенными особенностями и закономерностями, которые необходимо знать и учитывать.
Иррадиация- способн. нервных процессов возбужд. и тормож. Распростран. в ЦНС от одного ее элемента (участка) к другому. Ирр. возбужд, лежит в основе генерализации условного рефлекса и зависит от интенсивности раздражения.Ирр. тормож. Явл. следствием проявления доминантности отрицательных воздействий внешней среды и их тормозящего действия на другие реакции. Доминанта- временно господствующий очаг возбужд,подчиняющий себе в данный момент деятельность нервных центров, направляющий ее и определяющий характер ответной реакции. Концентрация- это способность процессов возбужд. и тормож.
возвращаться (после иррадиации) к исходному очагу (участку), где сила
возбуж. или тормож. была наивысшей, а поэтому и сохранение их
следов наиболее устойчиво. Концентрация лежит в основе механизмов различения условных стимулов, специализации условно-рефлекторных реакций. Индукция нервных процессов- взаимовлияние процессов возбуж. и торм. Индукция-это возбуждающее влияние одного процесса на другой как в периферии от пункта данного процесса, так и в месте прекра-
щения раздражения, вызывающего непосредственно тот или иной
процесс. Это влияние взаимное: процесс раздражения ведет к усилению торможения - к усиленному раздражению.
Когда в коре головного мозга возникает и стабилизируется очаг возбуждения или торможения, меняется состояние не только тех клеток, которые охвачены ими, но и соседних. В последних возникает противоположный процесс. Эта разновидность индукции называется одновременной, или пространственной. Другая разновидность- последовательная (временная) индукция. После исчезновения возбуждения в какой-то части головного мозга в ней развивается торможение, и наоборот. Индукция также может быть отрицательной.
В основе нервной деятельности лежат два процесса-озбуждение и торможение.

Возбуждение определенных участков нервных центров ЦНС проявляется в соответствующих действиях(рефлексах)собаки.Н-р,при воздействии звукового раздраж.собака прислушивается, при появлении запаха-принюхивается. Большинство условных рефлексов вырабатывается у собаки в процессе дрессировки на основе процесса возбуждения. Эти рефлексы называются положительными условными рефлексами.Торможение-это активный процесс нервной деят,противопол. возбуждению и вызывающий задержку рефлексов. Усл.рефлексы,кот.вырабатываются у собаки на основе использования тормозного процесса, называются тормозными, или отрицательными. Ярким примером такого рефлекса является запрещение нежелательных действий собаки по команде.Павлов устан.определенные закономерности в проявлении этих процессов, имеющих большое значение для дрессировки. Закономерности эти заключаются в следующем. Если в каком-либо участке коры головного мозга возникает очаг возбужд.или тормож, то возбуждение или торможение непременно будет вначале распространяться из пункта своего возникновения, захватывая соседние участки коры (процесс иррадиации).Н-р, для того чтобы добиться от собаки лая, дрессировщик может привязать ее и уйти. Уход дрессир.сильно возбудит собаку (иррадиация возбуждения) и она начнет лаять.Концентрацией называется обратное явление, когда возбужд.или торм, наоборот, сосредоточивается на определенном участке НС. Благодаря этому, н-р, после нескольких повторений собака приучается подавать голос только по команде, без побочных действий и общего возбуждения.Возникновение в коре головного мозга процесса, противоположного по своему значению первоначально возникшему, называется индукцией (положительная индукция).Н-р, после того как собаку сильно дразнили, вызывая возбуждение активно-оборонительного рефлекса, она может более жадно поедать пищу и т. д. Но возможно и обратное явление, когда возбуждение какого-либо рефлекса вызывает торможение другого (отрицательная индукция).Так, при появлении ориентировочного рефлекса собака часто перестает реагировать на команды дрессир.

7.Пластичность нервн. центров, ее биологическ. и психологическ. значимость . Доминанта Ухтомского.Пластичность нервн. центров – способность нервн. элементов к перестройке функциональных свойств. Основные проявл-я этого свойства: Синоптическое облегчение – это улучшение проведения в синапсах после короткого раздражения афферентных путей. Облегчение возрастает с увеличением частоты импульсов и достигает максимума, когда импульсы поступают с интервалом в несколько миллисекунд.Длительность синоптического облегчения зависит от свойств синапса и характера раздражения: после одиночных стимулов она выражена слабо, после раздражающей серии облегчение в ЦНС может продолжаться от нескольких минут до нескольких часов. Главной причиной возникновения синаптического облегчения явл-ся накопление Са2+ в пресинаптических окончаниях, поскольку Са2+, входящий в нервное окончание во время ПД, накаплив-ся там, т.к. ионная помпа не успевает выводить его. Кроме того, при частом использовании синапсов ускоряется синтез рецепторов и медиатора, а также мобилизация пузырьков, однако при редком использовании синапсов синтез медиаторов уменьшается (важнейшее свойство ЦНС). Поэтому фоновая активность нейронов способствует возникновению возбуждения в нервных центрах.Значение синоптического облегчения заключается в том, что оно создает предпосылки для улучшения процессов переработки информации на нейронах нервн. центров, что крайне важно, например, для выработки двигательных навыков и условн. рефлексов. Повторное возникновение явлений облегчения в нервном центре может вызвать переход центра из обычного состояния в доминантное.Образование временных связей, обеспечивающих формирование условных рефлексов, чему способствует синаптическое облегчение и доминантное состояние 2х центров. Например, сочетание звука колокольчика с подачей мясного корма вызывает у экспериментальной собаки слюноотделение. После повторения этого воздействия звучание только колокольчика вызывает такое же слюноотделение, как и мясо. В основе механизма выработки условного рефлекса лежит явление доминанты.
Доминанта – стойкий господствующий очаг возбуждения в ЦНС, подчиняющий себе в данный момент функции др. нервн. центров. Явление доминанты открыл А.А. Ухтомский в 1923 г. в опытах с раздражением двигательных зон коры большого мозга собаки и наблюдением сгибания конечности животного. Выяснилось, что если раздражать корковую двигательную зону на фоне избыточного повышения возбудимости др. нервн. центра, то сгибания конечности может не произойти. Вместо сгибания конечности раздражение двигательной зоны может вызвать реакцию тех эффекторов, деятельность кот. контролируется господствующим, т.е. доминирующим, в данный момент в ЦНС нервным центром. В эксперименте доминанту можно получить многократной посылкой афферентных импульсов к определенному центру или гуморальными влияниями на него. Роль гормонов в образовании доминантного очага возбуждения демонстрирует опыт на лягушке: весной у самца раздражение любого участка кожи вызывает не защитный рефлекс, а усиление обнимательного рефлекса. В условиях натурального поведения доминантное состояние нервн. центров может быть вызвано метаболическими причинами, изменениями состояния внутр. среды оргз. (например, чувством жажды при недостатке воды в орг-зме).Согласно учению А.А. Ухтомского, доминантный очаг – это констелляция, представляющая собой «физиологическую систему», образующуюся в ходе текущей деятельности орг-зма на всех этажах ЦНС, в разных ее участках, но с первичным фокусом возбуждения в одном из отделов и с переменным значением функций отдельных компонентов констелляции. Доминанта есть общий принцип работы ЦНС, и она определяет освобождение орг-зма от побочной деят-сти во имя достижения наиболее важн. для орг-зма целей.Ухтомский отмечал, «доминанта есть комплекс определенных симптомов во всем орг-зме», проявляющийся и в мышечной, и в секреторной, и в сосудистой деятельности.

8 билет. Основные отделы головного мозга Различают шесть главных отделов. Продолговатый мозг – отвечает за связь головного мозга со спинным. Варолиев мост – контролирует сокращения всех мышц во время сложных движений. Средний мозг – отвечает за слух, зрение и тонус мышц. Промежуточный мозг – отвечает за взаимодействие с внешним миром. Мозжечок – отвечает за координацию движений, а также ориентацию в пространстве. Большие полушария – отвечают за мыслительные процессы.

Продолговатый мозг Этот отдел расположен в черепе, он является началом стволовой части мозга. В его задней части расположены борозда и два канатика, являющиеся связующим звеном со спинным мозгом. Именно здесь находятся белое и серое вещества, первое снаружи, второе – внутри. Продолговатый мозг отвечает за две основные функции: рефлекторную и проводниковую. Благодаря этому здесь контролируются сердечно-сосудистая деятельность человека, дыхание, различные виды рефлексов, а также осуществляется связь головного и спинного мозга. Формирование этого отдела завершается к 7 годам.

Варолиев мост Этот отдел является продолжением предыдущего. Фактически он состоит из поперечных волокон, между которыми расположены ядра. Функционально варолиев мост отвечает за сокращения мышц всего туловища и конечностей, происходящие во время сложных движений. Здесь расположены центры, подобные спинномозговым, но более развитые.

Мозжечок Этот отдел расположен над двумя предыдущими. Он подразделяется на два полушария, которые соединены структурой под названием «червь». Отделы головного мозга и мозжечок объединяются при помощи нервных волокон, которые, соответственно, образуют «ножки», связывающие его со спинным и продолговатым мозгом. Мозжечок образован из белого и серого веществ. Первое расположено под корой, а второе находится снаружи, образуя кору отдела. Мозжечок отвечает за такие важные параметры, как координация движений и сохранение равновесия тела.

Средний мозг Этот отдел расположен над мостом. Именно в нем происходит передача сигналов, получаемых сетчаткой глаза, в головной мозг, где они и обрабатываются при помощи ядер верхних бугров четверохолмия, позволяя нам видеть. Нижние же ядра несут ответственность за работу слуховой системы человека а также быстроту реакций. Важную роль этот отдел играет в мелкой моторике и актах жевания и глотания, обеспечивая их правильную последовательность. Как и вышеописанные отделы головного мозга, средний мозг имеет прямое отношение к работе мышц.

Гипоталамус и гипофиз. важным элементом промежуточного мозга считается гипоталамус, в нем находится множество вегетативных центров. Он несет ответственность за обмен веществ, чувства страха и ярости, температуру тела, нервные связи и др. Гипоталамус также вырабатывает клетки, влияющие на работу гипофиза, который занимается регуляцией некоторых вегетативных функций организма. Термальная стадия развития промежуточного мозга завершается в подростковом возрасте.

Конечный мозг. Отделы головного мозга человека напрямую зависят от работы полушарий, или конечного мозга. Два полушария, которые составляют до 80% массы всего мозга, соединяются посредством мозолистого тела и других спаек. Кора, покрывающая элементы отдела, состоит из нескольких слоев серого вещества. Именно благодаря ей возможна реализация высшей психической деятельности. Работа, выполняемая обоими полушариями, неравнозначна. Левое, главенствующее, отвечает за мыслительные процессы, счет, письмо, правое – за восприятие сигналов внешнего мира.

№ 9. Продолговатый мозг. Его функциональное значение для организма

Продолговатый мозг – жизненно важный отдел центральной нервной системы, представляет непосредственное продолжение спинного мозга в ствол головного мозга и является частью ромбовидного мозга.

Через продолговатый мозг кора головного мозга получает всю информацию о контактах тела с поверхностями. Другими словами, благодаря продолговатому мозгу работают практически все тактильные рецепторы.

К основным его функциям относят – это рефлекторная и проводниковая.

1)Рефлекторная функция связана с центрами находящимися в продолговатом мозге.

В продолговатом мозге расположены следующие центры:

1) Дыхательный центр (обеспечивающий вентиляцию лёгких);

2) Пищевой центр (регулирующий сосание, глотание, отделение пищеварительного сока, слюноотделения, желудочного и поджелудочного соков);

3) Сердечнососудистый центр (регулирующий деятельность сердца и кровеносных сосудов);

4) Центр защитных рефлексов (мигание, слюноотделение, чихание, кашель, рвота);

5) Центр рефлексов поддержания позы (осуществляющий распределение мышечного тонуса между отдельными группами мышц и установочные рефлексы позы).