Меню
Бесплатно
Главная  /  Анатомия  /  Нервные узлы сердца. Проводящая система

Нервные узлы сердца. Проводящая система

Сердце обладает автоматизмом - способностью самостоятельно сокращаться через определенные промежутки времени.

Это становится возможным благодаря возникновению электрических импульсов в самом сердце. Оно продолжает биться при перерезке всех нервов, которые к нему подходят.

Импульсы возникают и проводятся по сердцу с помощью так называемой проводящей системы сердца .

Рассмотрим компоненты проводящей системы сердца:

  • синусно-предсердный узел,
  • предсердно-желудочковый узел,
  • пучок Гиса с его левой и правой ножкой,
  • волокна Пуркинье.

Теперь подробнее.

1) синусно-предсердный узел - источник возникновения электрических импульсов в норме. Именно здесь импульсы возникают и отсюда распространяются по сердцу (рисунок с анимацией внизу).

Cинусно-предсердный узел расположен в верхней части правого предсердия, между местом впадения верхней и нижней полой вены.

Слово “синус” в переводе означает “пазуха”, “полость”.

Фраза “ритм синусовый ” в расшифровке ЭКГ означает, что импульсы генерируются в правильном месте - синусно-предсердном узле.

Нормальная частота ритма в покое - от 60 до 80 ударов в минуту.

Частота сердечных сокращений (ЧСС) ниже 60 в минуту называется брадикардией , а выше 90 - тахикардия . У тренированных людей обычно наблюдается брадикардия.

Интересно знать, что в норме импульсы генерируются не с идеальной точностью.

Существует дыхательная синусовая аритмия (ритм называется неправильным, если временной интервал между отдельными сокращениями на ≥ 10% превышает среднее значение).

При дыхательной аритмии ЧСС на вдохе увеличивается , а на выдохе уменьшается, что связано с изменением тонуса блуждающего нерва и изменением кровенаполнения отделов сердца при повышении и понижении давления в грудной клетке. Как правило, дыхательная синусовая аритмия сочетается с синусовой брадикардией и исчезает при задержке дыхания и увеличении ЧСС.

Дыхательная синусовая аритмия бывает преимущественно у здоровых людей , особенно молодых. Появление такой аритмии у лиц, выздоравливающих после инфаркта миокарда, миокардита и др., является благоприятным признаком и указывает на улучшение функционального состояния миокарда.

2) предсердно-желудочковый узел (атриовентрикулярный, AV) является, можно сказать, “фильтром” для импульсов из предсердий. Он расположен возле самой перегородки между предсердиями и желудочками.

В AV-узле самая низкая скорость распространения электрических импульсов во всей проводящей системе сердца. Она равна примерно 10 см/с (для сравнения: в предсердиях и пучке Гиса импульс распространяется со скоростью 1 м/с, по ножкам пучка Гиса и всем нижележащим отделам вплоть до миокарда желудочков - 3-5 м/с).

Задержка импульса в AV-узле составляет около 0.08 с, она необходима, чтобы предсердия успели сократиться раньше и перекачать кровь в желудочки.

Почему я назвал AV-узел “фильтром “? Есть аритмии, при которых нарушается формирование и распространение импульсов в предсердиях. Например, при мерцательной аритмии (= фибрилляция предсердий) волны возбуждения беспорядочно циркулируют по предсердиям, но AV-узел блокирует большинство импульсов, не давая желудочкам сокращаться слишком часто.

С помощью различных препаратов можно регулировать ЧСС , повышая проводимость в AV-узле (адреналин, атропин) или снижая ее (дигоксин, верапамил, бета-блокаторы).

Постоянная мерцательная аритмия бывает тахисистолической (ЧСС > 90), нормосистолической (ЧСС от 60 до 90) или брадисистолической формы (ЧСС < 60). На скорой это одна из самых частых аритмий, ею страдает > 6% больных старше 60 лет . Любопытно, что с фибрилляцией предсердий жить можно годами, а вот фибрилляция желудочков является смертельной аритмией, при ней без экстренной медицинской помощи больной умирает за 6 минут.

3) Пучок Гиса (= предсердно-желудочковый пучок) не имеет четкой границы с AV-узлом, проходит в межжелудочковой перегродке и имет длину 2 см, после чего делится на левую и правую ножки соответственно к левому и правому желудочку.

Поскольку левый желудочек работает интенсивнее и больше по размерам, то левой ножке приходится разделиться на две ветви - переднюю и заднюю .

Зачем это знать? Патологические процессы (некроз, воспаление) могут нарушать распространение импульса по ножкам и ветвям пучка Гиса, что видно на ЭКГ. В таких случаях в заключении ЭКГ пишут, например, “полная блокада левой ножки пучка Гиса”.

4) Волокна Пуркинье связывают конечные разветвления ножек и ветвей пучка Гиса с сократительным миокардом желудочков.

Способностью генерировать электрические импульсы (т.е. автоматизмом) обладает не только синусовый узел. Природа позаботилась о надежном резервировании этой функции.

Синусовый узел является водителем ритма первого порядка и генерирует импульсы с частотой 60-80 в минуту.

Если по какой-то причине синусовый узел выйдет из строя, станет активным AV-узел - водитель ритма 2-го порядка , генерирующий импульсы 40-60 раз в минуту.

Водителем ритма третьего порядка являются ножки и ветви пучка Гиса, а также волокна Пуркинье. Автоматизм водителя ритма третьего порядка равен 15-40 импульсов в минуту. Водитель ритма также называют пейсмекером (pacemaker, от англ. pace - скорость, темп).

В норме активен только водитель ритма первого порядка, остальные “спят” . Такое происходит, потому что электрический импульс приходит к другим автоматическим водителям ритма раньше, чем в них успевает сгенерироваться собственный. Если автоматические центры не повреждены, то нижележащий центр становится источником сокращений сердца только при патологическом повышении его автоматизма (например, при пароксизмальной желудочковой тахикардии в желудочках возникает патологический источник постоянной импульсации, которая заставляет миокард желудочков сокращаться в своем ритме с частотой 140-220 в минуту).

Наблюдать работу пейсмекера третьего порядка можно также при полном блокировании проведения импульсов в AV-узле, что называется полной поперечной блокадой (= AV-блокада III степени). При этом на ЭКГ видно, что предсердия сокращаются в своем ритме с частотой 60-80 в минуту (ритм SA-узла), а желудочки - в своем с частотой 20-40 в минуту.

Сокращения сердечной мышцы вызываются электрическими импульсами, которые зарождаются и проводятся в специализированную и видоизмененную ткань сердца, названную проводниковой системой. В нормальном сердце импульсы возбуждения возникают в синусовом узле, проходят через предсердия и достигают атриовентрикулярного узла. Затем они проводятся в желудочки через пучок Гиса, его правую и левую ножку и сеть волокон Пуркинье, и достигают сократительных клеток миокарда желудочков.

ПРОВОДНИКОВАЯ СИСТЕМА

1. Синусовый узел (синоатриальный, S-A-узел Keith и Flack)

2. Передний межузловой путь с двумя разветвлениями:

2а - пучок к левому предсердию (пучок Bachmann)

2б - нисходящий пучок к межпредсердной перегородке и атриовентрикулярному узлу

3. Средний межузловой путь

4. Задний межузловой путь

5. Атриовентрикулярный (А-V) узел Ашоффа-Тавара

6. Пучок Гиса

7. Правая ножка пучка Гиса

8. Левая ножка пучка Гиса

9. Задняя ветвь левой ножки

10. Передняя ветвь левой ножки

11. Сеть волокон Пуркинье в желудочковой мускулатуре

12. Сеть волокон Пуркинье в предсердной мускулатуре

СИНУСОВЫЙ УЗЕЛ

Синусовый узел представляет собой пучок специфической сердечно-мышечной ткани, длина которого достигает 10-20 мм и ширина - 3-5 мм. Он расположен субэпикардиально в стенке правого предсердия, непосредственно сбоку от устья верхней полой вены. Клетки синусового узла расположены в нежной сети, состоящей из коллагеновой и эластической соединительной ткани. Существует два вида клеток синусового узла - водителя гритма или пейсмекерные (Р-клетки) и проводниковые (Т-клетки). Р-клетки генерируют электрические импульсы возбуждения, а Т-клетки выполняют преимущественно функцию проводников. Клетки Р связываются как между собой, так и с клетками Т. Последние, в свою очередь, анастомозируют друг с другом и связываются с клетками Пуркинье, расположенными около синусового узла.

В самом синусовом узле и рядом с ним находится множество нервных волокон симпатического и блуждающего нервов, а в субэпикардиальной жировой клетчатке над синусовым узлом расположены ганглии блуждающего нерва. Волокна к ним исходят в основном из правого блуждающего нерва.
Питание синусового узла осуществляется синоатриальной артерией. Это сравнительно крупный сосуд, который проходит через центр синусового узла и от него отходят мелкие ветви к ткани узла. В 60% случаев синоатриальная артерия отходит от правой венечной артерии, а в 40% - от левой.

Синусовый узел является нормальным электрическим водителем сердечного ритма. Через равные промежутки времени в нем возникают электрические потенциалы, возбуждающие миокард и вызывающие сокращение всего сердца. Клетки Р синусового узла генерируют электрические импульсы, которые проводятся клетками Т в близкорасположенные клетки Пуркинье. Последние, в свою очередь, активируют рабочий миокард правого предсердия. Кроме того, по специфическим путям электрический импульс проводится в левое предсердие и атриовентрикулярный узел.

МЕЖУЗЛОВЫЕ ПУТИ

Электрофизиологическими и анатомическими исследованиями в последнее десятилетие было доказано наличие трех специализированных проводниковых путей в предсердиях, связывающих синусовый с атриовентрикулярным узлом: передний, средний и задний межузловые пути (James, Takayasu, Merideth и Titus). Эти пути образованы клетками Пуркинье и клетками, очень похожими на клетки сократительного предсердного миокарда, нервными клетками и ганглиями блуждающего нерва (James).

Передний межузловой путь делится на две ветви - первая из них идет к левому предсердию и называется пучком Бахманна, а вторая спускается вниз и кпереди по межпредсердной перегородке и достигает верхней части атриовентрикулярного узла.

Средний межузловой путь , известный под названием пучок Венкебаха, начинается от синусового узла, проходит позади верхней полой вены, спускается вниз по задней части межпредсердной перегородки и, анастомозируя с волокнами переднего межузлового пути, достигает атриовентрикулярного узла.

Задний межузловой путь , названный пучком Тореля, отходит от синусового узла, идет вниз и кзади, проходит непосредственно над коронарным синусом и достигает задней части атриовентрикулярного узла. Пучок Тореля самый длинный из всех трех межузловых путей.

Все три межузловые пути анастомозируют между собой недалеко от верхней части атриовентрикулярного узла и связываются с ним. В некоторых случаях от анастомоза межузловых путей отходят волокна, которые обходят атриовентрикулярный узел и сразу достигают его нижней части, или же доходят до того места, где он переходит в начальную часть пучка Гиса.

АТРИОВЕНТРИКУЛЯРНЫЙ УЗЕЛ

Атриовентрикулярный узел находится справа от межпредсердной перегородки над местом прикрепления створки трехстворчатого клапана, непосредственно рядом с устьем коронарного синуса. Форма и размеры его разные: в среднем длина его достигает 5-6 мм, а ширина - 2-3 мм.

Подобно синусовому узлу, атриовентрикулярный узел содержит также два вида клеток - Р и Т. Однако имеются значительные анатомические различия между синоаурикулярным и атриовентрикулярным узлами. В атриовентрикулярном узле гораздо меньше Р-клеток и незначительное количество сети коллагеновой соединительной ткани. У него нет постоянной, центрально проходящей артерии. В жировой клетчатке за атриовентрикулярным узлом, вблизи устья коронарного синуса, находится большое число волокон и ганглиев блуждающего нерва. Кровоснабжение атриовентрикулярного узла происходит посредством ramus septi fibrosi, называемой еще артерией атриовентрикулярного узла. В 90% случаев она отходит от правой венечной артерии, а в 10% - от ramus circumflexus левой венечной артерии.

Клетки атриовентрикулярного узла связываются анастомозами и образуют сетчатую структуру. В нижней части узла, перед переходом в пучок Гиса, клетки его располагаются параллельно друг другу.

ПУЧОК ГИСА

Пучок Гиса, названный еще и атриовентрикулярным пучком, начинается непосредственно в нижней части атриовентрикулярного узла, и между ними нет ясной грани. Пучок Гиса проходит по правой части соединительнотканного кольца между предсердиями и желудочками, названного центральным фиброзным телом. Эта часть известна под названием начальной проксимальной или пенетрирующей части пучка Гиса. Затем пучок Гиса переходит в задне-нижний край мембранозной части межжелудочковой перегородки и доходит до ее мышечной части. Это так называемая мембранозная часть пучка Гиса. Пучок Гиса состоит из клеток Пуркинье, расположенных в виде параллельных рядов с незначительными анастомозами между ними, покрытых мембраной из коллагеновой ткани. Пучок Гиса расположен совсем рядом с задней некоронарной створкой аортального клапана. Длина его около 20 см. Питание пучка Гиса осуществляется артерией атриовентрикулярного узла.

Иногда от дистальной части пучка Гиса и начальной части левой ножки его отходят короткие волокна, идущие в мышечную часть межжелудочковой перегородки. Эти волокна называются параспецифическими фибрами Махайма.

До пучка Гиса доходят нервные волокна блуждающего нерва, но в нем нет ганглиев этого нерва.

ПРАВАЯ И ЛЕВАЯ НОЖКИ ПУЧКА ГИСА

Пучок Гиса в нижней части, названной бифуркацией, разделяется на две ножки - правую и левую, которые идут субэндокардиально или интракардиально по соответствующей стороне межжелудочковой перегородки. Правая ножка представляет собой длинный, тонкий, хорошо обособленный пучок, состоящий из множества волокон, имеющих незначительные проксимальные разветвления или без таковых. В дистальной части правая ножка пучка Гиса выходит из межжелудочковой перегородки и достигает передней сосочковой мышцы правого желудочка, где разветвляется и связывается анастомозами с волокнами сети Пуркинье.

Несмотря на усиленные морфологические изучения, проводимые в последние годы, структура левой ножки пучка Гиса остается невыясненной. Существуют две основные схемы строения левой ножки пучка Гиса. Согласно первой схеме (Rosenbaum и сотр.), левая ножка еще с самого начала делится на две ветви - переднюю и заднюю. Передняя ветвь - относительно более длинная и тонкая - достигает основания передней сосочковой мышцы и разветвляется в передне-верхней части левого желудочка. Задняя ветвь - относительно короткая и толстая - достигает основания задней сосочковой мышцы левого желудочка. Таким образом внутрижелудочковая проводниковая система представлена тремя проводящими путями, названными Rosenbaum и сотр. фасцикулами, - правой ножкой, передней ветвью и задней ветвью левой ножки пучка Гиса. Множество электрофизиологических исследований поддерживают мнение о трехпучковой (трифасцикулярной) внутрижелудочковой проводниковой системе.

По второй схеме (James и сотр.) считается, что в отличие от правой ножки, левая не представляет собой обособленного пучка. Левая ножка еще в самом начале, отходя от пучка Гиса, разделяется на множество варьирующих по числу и толщине волокон, которые веерообразно разветвляются субэндокардиально по левой стороне межжелудочковой перегородки. Два из множества разветвлений образуют более обособленные пучки - один, расположенный спереди, - в направлении передней, а другой сзади - в направлении задней сосочковой мышцы.

Как левая, так и правая ножка пучка Гиса, подобно межузловым путям предсердий, составлены из двух видов клеток - клеток Пуркинье и клеток, очень похожих на клетки сократительного миокарда.
Большая часть правой и передние две трети левой ножки кровоснабжаются септальными веточками левой передней нисходящей артерии. Задняя треть левой ножки питается септальными веточками задней нисходящей артерии. Существует множество транссептальных анастомозов между септальными веточками передней нисходящей венечной артерии и веточками задней нисходящей венечной артерии (James).
Волокна блуждающего нерва доходят до обеих ножек пучка Гиса, однако в проводниковых путях желудочков нет ганглиев этого нерва.

ВОЛОКНА СЕТИ ПУРКИНЬЕ

Конечные разветвления правой и левой ножек пучка Гиса связываются анастомозами с обширной сетью клеток Пуркинье, расположенных субэндокардиально в обоих желудочках. Клетки Пуркинье представляют собой видоизмененные клетки миокарда, которые непосредственно связываются с сократительным миокардом желудочков. Электрический импульс, поступающий по внутрижелудочковым проводящим путям, достигает клеток сети Пуркинье и отсюда переходит непосредственно к сократительным клеткам желудочков, вызывая сокращение миокарда.

Нервные волокна блуждающего нерва не доходят до сети волокон Пуркинье в желудочках.
Клетки сети волокон Пуркинье питаются кровью из капиллярной сети артерий соответствующего района миокарда.

  • Кровоснабжение сердца. Питание сердца. Венечные артерии сердца.
  • Положение сердца. Типы положения сердца. Величина сердца.
  • Важную роль в ритмичной работе сердца и в координации деятельности мускулатуры отдельных камер сердца играет так называемая проводящая система сердца. Хотя мускулатура предсердий отделена от мускулатуры желудочков фиброзными кольцами, однако между ними существует связь посредством проводящей системы, представляющей собой сложное нервно-мышечное образование. Мышечные волокна, входящие в ее состав (проводящие волокна), имеют особое строение: их клетки бедны миофиб-риллами и богаты саркоплазмой, поэтому светлее. Они видимы иногда невооруженным глазом в виде светло окрашенных ниточек и представляют менее дифференцированную часть первоначального синцития, хотя по величине превосходят обычные мышечные волокна сердца. В проводящей системе различают узлы и пучки.

    1. Синусно-предсердный узел, nodus sinuatrialis , расположен в участке стенки правого предсердия, соответствующем sinus venosus холоднокровных (в sulcus terminalis, между верхней полой веной и правым ушком). Он связан с мускулатурой предсердий и имеет значение для их ритмичного сокращения.

    2. Предсердно-желудочковый узел, nodus atrioventricularis , расположен в стенке правого предсердия, близ cuspis septalis трехстворчатого клапана. Волокна узла, непосредственно связанные с мускулатурой предсердия, продолжаются в перегородку между желудочками в виде предсердно-желудочкового пучка, fasciculus atrioventricularis (пучок Гиса) . В перегородке желудочков пучок делится на две ножки - crus dextrum et sinistrum , которые идут в стенки соименных желудочков и ветвятся под эндокардом в их мускулатуре. Предсердно-желудочковый пучок имеет весьма важное значение для работы сердца, так как по нему передается волна сокращения с предсердий на желудочки, благодаря чему устанавливается регуляция ритма систолы - предсердий и желудочков.

    Следовательно, предсердия связаны между собой синусно-предсердным узлом, а предсердия и желудочки - предсердно-желудочковым пучком. Обычно раздражение из правого предсердия передается с синусно-предсердного узла на предсердно-желудочковый, а с него по предсердно-желудочковому пучку на оба желудочка.

    В естественных условиях клетки миокарда находятся в состоянии ритмической активности (возбуждения), поэтому об их потенциале покоя можно говорить лишь условно. У большинства клеток он составляет около 90 мВ и определяется почти целиком концентра­ционным градиентом ионов К+.

    Потенциалы действия (ПД), зарегистрированные в разных от­делах сердца при помощи внутриклеточных микроэлектродов, су­щественно различаются по форме, амплитуде и длительности (рис. 7.3, А). На рис. 7.3, Б схематически показан ПД одиночной клетки миокарда желудочка. Для возникновения этого потенциала потребовалось деполяризовать мембрану на 30 мВ. В ПД различают следующие фазы: быструю начальную деполяризацию - фаза 1; медленную реполяризацию, так называемое плато - фаза 2; быст­рую реполяризацию - фаза 3; фазу покоя - фаза 4.

    Фаза 1 в клетках миокарда предсердий, сердечных проводящих миоцитов (волокна Пуркинье) и миокарда желудочков имеет ту же природу, что и восходящая фаза ПД нервных и скелетных мышечных волокон - она обусловлена повышением натриевой проницаемости, т. е. активацией быстрых натриевых каналов клеточной мембраны. Во время пика ПД происходит изменение знака мембранного по­тенциала (с -90 до +30 мВ).

    Деполяризация мембраны вызывает активацию медленных на­трий-кальциевых каналов. Поток ионов Са2+ внутрь клетки по этим каналам приводит к развитию плато ПД (фаза 2). В период плато натриевые каналы инактивируются и клетка переходит в состояние абсолютной рефрактерности. Одновременно происходит активация калиевых каналов. Выходящий из клетки поток ионов К+ обеспе­чивает быструю реполяризацию мембраны (фаза 3), во время ко­торой кальциевые каналы закрываются, что ускоряет процесс ре­поляризации (поскольку падает входящий кальциевый ток, деполя­ризующий мембрану).

    Реполяризация мембраны вызывает постепенное закрывание ка­лиевых и реактивацию натриевых каналов. В результате возбудимость миокардиальной клетки восстанавливается - это период так называемой относительной рефрактерности.

    В клетках рабочего миокарда (предсердия, желудочки) мембран­ный потенциал (в интервалах между следующими друг за другом ПД) поддерживается на более или менее постоянном уровне. Однако в клетках синусно-предсердного узла, выполняющего роль водителя ритма сердца, наблюдается спонтанная диастолическая деполяриза­ция (фаза 4), при достижении критического уровня которой (при­мерно -50 мВ) возникает новый ПД (см. рис. 7.3, Б). На этом механизме основана авторитмическая активность указанных сердеч­ных клеток. Биологическая активность этих клеток имеет и другие важные особенности: 1) малую крутизну подъема ПД; 2) медленную реполяризацию (фаза 2), плавно переходящую в фазу быстрой реполяризации (фаза 3), во время которой мембранный потенциал достигает уровня -60 мВ (вместо -90 мВ в рабочем миокарде), после чего вновь начинается фаза медленной диастолической депо­ляризации. Сходные черты имеет электрическая активность клеток предсердно-желудочкового узла, однако скорость спонтанной диасто­лической деполяризации у них значительно ниже, чем у клеток синусно-предсердного узла, соответственно ритм их потенциальной автоматической активности меньше.

    Ионные механизмы генерации электрических потенциалов в клетках водителя ритма полностью не расшифрованы. Установлено, что в развитии медленной диастолической деполяризации и мед­ленной восходящей фазы ПД клеток синусно-предсердного узла ведущую роль играют кальциевые каналы. Они проницаемы не только для ионов Са2+, но и для ионов Na+. Быстрые нат­риевые каналы не принимают участия в генерации ПД этих клеток.

    Скорость развития медленной диастолической деполяризации ре­гулируется автономной (вегетативной) нервной системой. В случае влияния симпатической части медиатор норадреналин активирует медленные кальциевые каналы, вследствие чего скорость диастоли­ческой деполяризации увеличивается и ритм спонтанной активности возрастает. В случае влияния парасимпатической части медиатор АХ повышает калиевую проницаемость мембраны, что замедляет развитие диастолической деполяризации или прекращает ее, а также гиперполяризует мембрану. По этой причине происходит урежение ритма или прекращение автоматии.

    Способность клеток миокарда в течение жизни человека нахо­диться в состоянии непрерывной ритмической активности обеспе­чивается эффективной работой ионных насосов этих клеток. В период диастолы из клетки выводятся ионы Na+, а в клетку возвращаются ионы К+. Ионы Са2+, проникшие в цитоплазму, поглощаются эндоплазматической сетью. Ухудшение кровоснабжения миокарда (ишемия) ведет к обеднению запасов АТФ и креатинфосфата в миокардиальных клетках; работа насосов нарушается, вследствие чего уменьшается электрическая и механическая активность мио­кардиальных клеток.

    Функции проводящей системы сердца

    Спонтанная генерация ритмических импульсов является резуль­татом слаженной деятельности многих клеток синусно-предсердного узла, которая обеспечивается тесными контактами (нексусы) и электротоническим взаимодействием этих клеток. Возникнув в синусно-предсердном узле, возбуждение распространяется по проводящей системе на сократительный миокард.

    Особенностью проводящей системы сердца является способность каждой клетки самостоятельно генерировать возбуждение. Сущест­вует так называемый градиент автоматии, выражающийся в убывающей способности к автоматии различных участков прово­дящей системы по мере их удаления от синусно-предсердного узла, генерирующего импульса с частотой до 60-80 в минуту.

    В обычных условиях автоматия всех нижерасположенных уча­стков проводящей системы подавляется более частыми импульсами, поступающими из синусно-предсердного узла. В случае поражения и выхода из строя этого узла водителем ритма может стать предсердно-желудочковый узел. Импульсы при этом будут возникать с частотой 40-50 в минуту. Если окажется выключенным и этот узел, водителем ритма могут стать волокна предсердно-желудочкового пучка (пучок Гиса). Частота сердечных сокращений в этом случае не превысит 30-40 в минуту. Если выйдут из строя и эти водители ритма, то процесс возбуждения спонтанно может возник­нуть в клетках волокон Пуркинье. Ритм сердца при этом будет очень редким - примерно 20 в минуту.

    Отличительной особенностью проводящей системы сердца явля­ется наличие в ее клетках большого количества межклеточных контактов - нексусов. Эти контакты являются местом перехода возбуждения с одной клетки на другую. Такие же контакты имеются и между клетками проводящей системы и рабочего миокарда. Бла­годаря наличию контактов миокард, состоящий из отдельных клеток, работает как единой целое. Существование большого количества межклеточных контактов увеличивает надежность проведения воз­буждения в миокарде.

    Возникнув в синусно-предсердном узле, возбуждение распрост­раняется по предсердиям, достигая предсердно-желудочкового (атриовентрикулярного) узла. В сердце теплокровных животных суще­ствуют специальные проводящие пути между синусно-предсердным и предсердно-желудочковым узлами, а также между правым и левым предсердиями. Скорость распространения возбуждения в этих про­водящих путях ненамного превосходит скорость распространения возбуждения по рабочему миокарду. В предсердно-желудочковом узле благодаря небольшой толщине его мышечных волокон и особому способу их соединения возникает некоторая задержка проведения возбуждения. Вследствие задержки возбуждение доходит до пред­сердно-желудочкового пучка и сердечных проводящих миоцитов (волокна Пуркинье) лишь после того, как мускулатура предсердий успевает сократиться и перекачать кровь из предсердий в желудочки.

    Следовательно, атриовентрикулярная задержка обеспечивает необ­ходимую последовательность (координацию) сокращений предсердий и желудочков.

    Скорость распространения возбуждения в предсердно-желудочковом пучке и в диффузно расположенных сердечных проводящих миоцитах достигает 4,5-5 м/с, что в 5 раз больше скорости рас­пространения возбуждения по рабочему миокарду. Благодаря этому клетки миокарда желудочков вовлекаются в сокращение почти од­новременно, т. е. синхронно (см. рис. 7.2). Синхронность сокращения клеток повышает мощность миокарда и эффективность нагнетатель­ной функции желудочков. Если бы возбуждение проводилось не через предсердно-желудочковый пучок, а по клеткам рабочего мио­карда, т. е. диффузно, то период асинхронного сокращения продол­жался бы значительно дольше, клетки миокарда вовлекались в сокращение не одновременно, а постепенно и желудочки потеряли бы до 50% своей мощности.

    Таким образом, наличие проводящей системы обеспечивает ряд важных физиологических особенностей сердца: 1) ритмическую ге­нерацию импульсов (потенциалов действия); 2) необходимую по­следовательность (координацию) сокращений предсердий и желу­дочков; 3) синхронное вовлечение в процесс сокращения клеток миокарда желудочков (что увеличивает эффективность систолы).

    ФИЗИОЛОГИЯ СЕРДЦА

    Самой главной функцией сердца является насосная . т. е. способность сердца непрерывно перекачивать кровь из вен в артерии, из большого круга кровообращения в малый. Цель этого насоса – доставлять кровь, несущую кислород и питательные вещества, ко всем органам и тканям, чтобы обеспечить их жизнедеятельность, забрать вредные продукты жизнедеятельности и донести их к обезвреживающим органам.

    Сердце – это своеобразный вечный двигатель. В этом и последующих выпусках по физиологии сердца будут описаны сложнейшие механизмы, за счёт которых оно функционирует.

    Выделяют 4 основные свойства сердечной ткани:

    • Возбудимость – способность отвечать на действия раздражителей возбуждением в виде электрических импульсов.
    • Автоматизм – способность самовозбуждаться, т. е. генерировать электрические импульсы в отсутствие внешних раздражителей.
    • Проводимость – способность проводить возбуждение от клетки к клетке без затухания.
    • Сократимость – способность мышечных волокон укорачиваться или увеличивать своё напряжение.

    Средняя оболочка сердца – миокард – состоит из клеток, которые называются кардиомиоцитами. Кардиомиоциты не все одинаковы по своей структуре и выполняют различные функции. Выделяют следующие разновидности кардиомиоцитов:

    • Сократительные (рабочие, типичные) кардиомиоциты составляют 99 % массы миокарда и обеспечивают непосредственно сократительную функцию сердца.
    • Проводящие (атипичные, специализированные) кардиомиоциты . которые формируют проводящую систему сердца. Среди проводящих кардиомиоцитов различают 2 вида клеток – Р-клетки и клетки Пуркинье. Р-клетки (от англ. рale – бледный) обладают способностью периодически генерировать электрические импульсы, чем и обеспечивают функцию автоматизма. Клетки Пуркинье обеспечивают проведение импульсов ко всем отделам миокарда и имеют слабую способность к автоматизму.
    • Переходные кардиомиоциты или Т-клетки (от англ. transitional — переходный) расположены между проводящими и сократительными кардиомиоцитами и обеспечивают их взаимодействие (т. е. передачу импульса от проводящих клеток к сократительным).
    • Секреторные кардиомиоциты расположены преимущественно в предсердиях. Они выделяют в просвет предсердий натрийуретический пептид – гормон, регулирующий водно-электролитный баланс в организме и артериальное давление.

    Все типы клеток миокарда не обладают способностью к делению, т. е. не способны к регенерации. Если у человека повышается нагрузка на сердце (например, у спортсменов), увеличение мышечной массы происходит за счёт увеличения объёма отдельных кардиомиоцитов (гипертрофии), а не их общего количества (гиперплазии).

    Теперь рассмотрим подробнее строение проводящей системы сердца (рис. 1). Она включает в себя следующие основные структуры:

    • Синоатриальный (от латинского sinus – пазуха, atrium – предсердие), или синусовый , узел расположен на задней стенке правого предсердия около устья верхней полой вены. Он образован P-клетками, которые посредством Т-клеток связаны между собой и с сократительными кардиомиоцитами предсердий. От синоатриального узла в направлении к атриовентрикулярному узлу отходят 3 межузловых пучка: передний (пучок Бахмана), средний (пучок Венкебаха) и задний (пучок Тореля).
    • Атриовентрикулярный (от лат. аtrium – предсердие, ventriculum – желудочек) узел – расположен в зоне перехода от предсердных кардиомиоцитов к пучку Гиса. Содержит Р-клетки, но в меньшем количестве, чем в синусовом узле, клетки Пуркинье, Т-клетки.
    • Предсердно-желудочковый пучок, или пучок Гиса (описан немецким анатомом В. Гисом в 1893 г.) в норме является единственным путём проведения возбуждения от предсердий к желудочкам. Он отходит от атриовентрикулярного узла общим стволом и проникает в межжелудочковую перегородку. Здесь пучок Гиса делится на 2 ножки – правую и левую, идущие к соответствующим желудочкам. Левая ножка делится на 2 ветви – передневерхнюю и задненижнюю. Ветви пучка Гиса заканчиваются в желудочках сетью мелких волокон Пуркинье (описаны чешским физиологом Я. Пуркинье в 1845 г.).

    1. Синусовый узел. 2. Атриовентрикулярный узел. 3. Ножки пучка Гиса. 4. Волокна Пуркинье.

    У некоторых людей встречаются дополнительные (аномальные) проводящие пути (пучок Джеймса, пучок Кента), которые участвуют в возникновении нарушений сердечного ритма (например, синдрома преждевременного возбуждения желудочков).

    В норме возбуждение зарождается в синусном узле, переходит на миокард предсердий, и, пройдя атриовентрикулярный узел, распространяется по ножкам пучка Гиса и волокнам Пуркинье на миокард желудочков.

    Таким образом, нормальный ритм сердца определяется активностью синоатриального узла, который называют водителем ритма первого порядка, или истинным пейсмекером (от англ. pacemaker – «отбивающий шаг»). Автоматизм присущ также другим структурам проводящей системы сердца. Водитель второго порядка локализован в атриовентрикулярном узле. Водителями третьего порядка являются клетки Пуркинье, входящие в состав проводящей системы желудочков.

    Продолжение следует.

    Проводящая система сердца. Синусовый узел

    На рисунке показана схема проводящей системы сердца . В ее состав входят: (1) синусный узел (который также называют синоатриальным или С-А узлом), где и происходит ритмическая генерация импульсов; (2) предсердные межузловые пучки, по которым импульсы проводятся от синусного узла к агриовентрикулярному узлу; (3) атриовентрикулярный узел, в котором происходит задержка проведения импульсов от предсердий к желудочкам; (4) атриовентрикулярный пучок, по которому импульсы проводятся к желудочкам; (5) левая и правая ножки А-В пучка, состоящие из волокон Пуркинье, благодаря которым импульсы достигают сократительного миокарда.

    Синусный (синоатриальный) узел представляет собой небольшую эллипсовидную пластинку шириной 3 мм, длиной 15 мм и толщиной 1 мм, состоящую из атипических кардиомноцитов. С-А узел расположен в верхней части заднебоковой стенки правого предсердия у места впадения в него верхней полой вены. Клетки, входящие в состав С-А узла, практически не содержат сократительных филаментов; их диаметр всего лишь 3-5 мкм (в отличие от предсердных сократительных волокон, диаметр которых 10-15 мкм). Клетки синусного узла непосредственно связаны с сократительными мышечными волокнами, поэтому потенциал действия, возникший в синусном узле, немедленно распространяется на миокард предсердий.

    Автоматия - это способность некоторых сердечных волокон самостоятельно возбуждаться и вызывать ритмические сокращения сердца. Способностью к автоматии обладают клетки проводящей системы сердца, в том числе клетки синусного узла. Именно С-А узел контролирует ритм сердечных сокращений, как мы увидим далее. А сейчас обсудим механизм автоматии.

    Механизм автоматии синусного узла . На рисунке представлены потенциалы действия клетки синусного узла, записанные на протяжении трех сердечных циклов, и для сравнения - одиночный потенциал действия кардиомиоцита желудочка. Необходимо отметить, что потенциал покоя клетки синусного узла имеет меньшую величину (от -55 до -60 мВ) в отличие от типичного кардиомиоцита (от -85 до -90 мВ). Это различие объясняется тем, что мембрана узловой клетки в большей степени проницаема для ионов натрия и кальция. Вход этих катионов в клетку нейтрализует часть внутриклеточных отрицательных зарядов и уменьшает величину потенциала покоя.

    Прежде чем перейти к механизму автоматии . необходимо вспомнить, что в мембране кардиомиоцитов существуют три типа ионных каналов, которые играют важную роль в генерации потенциала действия: (1) быстрые натриевые каналы, (2) медленные Na+/Са2+-каналы, (3) калиевые каналы. В клетках миокарда желудочков кратковременное открытие быстрых натриевых каналов (на несколько десятитысячных долей секунды) и вход ионов натрия в клетку приводит к быстрой деполяризации и перезарядке мембраны кардиомиоцита. Фаза плато потенциала действия, которая продолжается 0,3 сек, формируется за счет открытия медленных Na+/Ca -каналов. Затем открываются калиевые каналы, происходит диффузия ионов калия из клетки - и мембранный потенциал возвращается к исходному уровню.

    В клетках синусного узла потенциал покоя меньше, чем в клетках сократительного миокарда (-55 мВ вместо -90 мВ). В этих условиях ионные каналы функционируют по-другому. Быстрые натриевые каналы инактивированы и не могут участвовать в генерации импульса. Дело в том, что любое уменьшение мембранного потенциала до -55 мВ на срок больший, чем несколько миллисекунд, приводит к закрытию инактивационных ворот во внутренней части быстрых натриевых каналов. Большая часть этих каналов оказывается полностью блокирована. В этих условиях могут открыться только медленные Na+/Ca -каналы, и поэтому именно их активация становится причиной возникновения потенциала действия. Кроме того, активация медленных Na/Ca -каналов обусловливает сравнительно медленное развитие процессов деполяризации и реполяризации в клетках синусного узла в отличие от волокон сократительного миокарда желудочков.

    Синусовый узел - это водитель синусового ритма, он состоит из группы клеток, обладающих свойством автоматизма, и располагается в месте впадения верхней полой вены в правое предсердие.

    Синусовый узел кровоснабжается из ветви синусового узла, которая в 55% случаев отходит от проксимальной части правой коронарной артерии, а в 35% случаев от огибающей артерии (см. рис.). В 10% случаев наблюдается двойное кровоснабжение синусового узла из правой коронарной артерии и огибающей артерии.

    Рисунок. Проводящая система сердца и ее кровоснабжение. ЗНВ - задняя нисходящая ветвь; ЛНПГ — левая ножка пучка Гиса; ОА — огибающая артерия; ПКА — правая коронарная артерия; ПНА — передняя нисходящая артерия; ПНПГ —правая ножка пучка Гиса; СУ — синусовый узел

    Если синусовый узел не работает, включаются латентные водители ритма в предсердиях, АВ-узле или желудочках. На автоматизм синусового узла влияют симпатическая и парасимпатическая нервная система.

    АВ-узел

    АВ-узел располагается в переднемедиальной части правого предсердия перед устьем коронарного синуса.

    Возбуждение, возникающее в синусовом узле, распространяется по предсердиям и достигает АВ-узла. АВ-узел также иннервируется симпатическими и парасимпатическими нервными волокнами.

    АВ-узел кровоснабжается из ветви АВ-узла, которая в 80% случаев отходит от задней нисходящей ветви (см. рис.), в 10% случаев — от огибающей артерии, а еще в 10% случаев — от обеих артерий.

    Благодаря коллатеральному кровоснабжению АВ-узла из передней нисходящей артерии он менее подвержен ишемическому повреждению, чем синусовый узел.

    Пучок Гиса и его ветви

    Возбуждение задерживается в АВ-узле примерно на 0,2 с, а затем распространяется по пучку Гиса и его правой и левой ножкам. Левая ножка пучка Гиса делится на две ветви — переднюю и заднюю. Вегетативная иннервация почти не влияет на проведение в системе Гиса—Пуркинье.

    Пучок Гиса и его правая ножка кровоснабжаются из ветви АВ-узла и из септальных ветвей передней нисходящей артерии. Передняя ветвь левой ножки пучка Гиса кровоснабжается из септальных ветвей передней нисходящей артерии, а ее задняя ветвь имеет двойное кровоснабжение: из септальных ветвей передней нисходящей артерии и из ветвей задней нисходящей ветви.