Меню
Бесплатно
Главная  /  Болезни  /  Как происходит мутация генов. Виды мутаций, причины, примеры

Как происходит мутация генов. Виды мутаций, причины, примеры

Генные мутации - изменение строения одного гена. Это изменение в последовательности нуклеотидов: выпадение, вставка, замена и т.п. Например, замена а на т. Причины - нарушения при удвоении (репликации) ДНК

Генные мутации представляют собой молекулярные, не видимые в световом микроскопе изменения структуры ДНК. К мутациям генов относятся любые изменения молекулярной структуры ДНК, независимо от их локализации и влияния на жизнеспособность. Некоторые мутации не оказывают никакого влияния на структуру и функцию соответствующего белка. Другая (большая) часть генных мутаций приводит к синтезу дефектного белка, не способного выполнять свойственную ему функцию. Именно генные мутации обусловливают развитие большинства наследственных форм патологии.

Наиболее частыми моногенными заболеваниями являются у человека являются: муковисцидоз, гемохроматоз, адрено-генитальный синдром, фенилкетонурия, нейрофиброматоз, миопатии Дюшенна-Беккера и ряд других заболеваний. Клинически они проявляются признаками нарушений обмена веществ (метаболизма) в организме. Мутация может заключаться:

1) в замене основания в кодоне, это так называемая миссенсмутация (от англ, mis - ложный, неправильный + лат. sensus - смысл) - замена нуклеотида в кодирующей части гена, приводящая к замене аминокислоты в полипептиде;

2) в таком изменении кодонов, которое приведет к остановке считывания информации, это так называемая нонсенсмутация (от лат. non - нет + sensus - смысл) — замена нуклеотида в кодирующей части гена, приводит к образованию кодона-терминатора (стоп-кодона) и прекращению трансляции;

3) нарушении считывания информации, сдвиге рамки считывания, называемом фреймшифтом (от англ. frame - рамка + shift: - сдвиг, перемещение), когда молекулярные изменения ДНК приводят к изменению триплетов в процессе трансляции полипептидной цепи.

Известны и другие типы генных мутаций. По типу молекулярных изменений выделяют:

делении (от лат. deletio - уничтожение), когда происходит утрата сегмента ДНК размером от одного нуклеотида до гена;

дупликации (от лат. duplicatio - удвоение), т.е. удвоение или повторное дублирование сегмента ДНК от одного нуклеотида до целых генов;

инверсии (от лат. inversio - перевертывание), т.е. поворот на 180° сегмента ДНК размерами от двух нукпеотидов до фрагмента, включающего несколько генов;

инсерции (от лат. insertio - прикрепление), т.е. вставка фрагментов ДНК размером от одного нуклеотида до целого гена.

Молекулярные изменения, затрагивающие от одного до нескольких нуклеотидов, рассматривают как точечную мутацию.

Принципиальным и отличительным для генной мутации является то, что она 1) приводит к изменению генетической информации, 2) может передаваться от поколения к поколению.

Определенная часть генных мутаций может быть отнесена к нейтральным мутациям, поскольку они не приводят к каким-либо изменениям фенотипа. Например, за счет вырожденности генетического кода одну и ту же аминокислоту могут кодировать два триплета, различающихся только по одному основанию. С другой стороны, один и тот же ген может изменяться (мутировать) в несколько различающихся состояний.

Например, ген, контролирующий группу крови системы АВ0. имеет три аллеля: 0, А и В, сочетания которых определяют 4 группы крови. Группа крови системы АВ0 является классическим примером генетической изменчивости нормальных признаков человека.

Именно генные мутации обусловливают развитие большинства Ласледственных форм патологии. Болезни, обусловленные подобными мутациями, называют генными, или моногенными, болезнями, Т. е. заболеваниями, развитие которых детерминируется мутацией одного гена.

Геномные и хромосомные мутации

Геномные и хромосомные мутации являются причинами возникновения хромосомных болезней. К геномным мутациям относятся анеуплоидии и изменение плоидности структурно неизмененных хромосом. Выявляются цитогенетическими методами.

Анеуплоидия — изменение (уменьшение — моносомия, увеличение — трисомия) числа хромосом в диплоидном наборе, некратное гаплоидному (2n + 1, 2n - 1 и т.д.).

Полиплоидия — увеличение числа наборов хромосом, кратное гаплоидному (3n, 4n, 5n и т.д.).

У человека полиплоидия, а также большинство анеуплоидии являются летальными мутациями.

К наиболее частым геномным мутациям относятся:

трисомия — наличие трех гомологичных хромосом в кариотипе (например, по 21-й паре, при синдроме Дауна, по 18-й паре при синдроме Эдвардса, по 13-й паре при синдроме Патау; по половым хромосомам: XXX, ХХY, ХYY);

моносомия - наличие только одной из двух гомологичных хромосом. При моносомии по любой из аутосом нормальное развитие эмбриона невозможно. Единственная моносомия у человека, совместимая с жизнью, - моносомия по Х-хромосоме - приводит (к синдрому Шерешевского-Тернера (45, Х0).

Причиной, приводящей к анеуплоидии, является нерасхождение хромосом во время клеточного деления при образовании половых клеток или утрата хромосом в результате анафазного отставания, когда во время движения к полюсу одна из гомологичных хромосом может отстать от всех других негомологичных хромосом. Термин «нерасхождение» означает отсутствие разделения хромосом или хроматид в мейозе или митозе. Утрата хромосом может приводить к мозаицизму, при котором имеется одна эуплоидная (нормальная) клеточная линия, а другая — моносомная .

Нерасхождение хромосом наиболее часто наблюдается во время мейоза. Хромосомы, которые в норме должны делиться во время мейоза, остаются соединенными вместе и в анафазе отходят к одному полюсу клетки. Таким образом, возникают две гаметы, одна из которых имеет добавочную хромосому, а другая не имеет этой хромосомы. При оплодотворении гаметы с нормальным набором хромосом гаметой с лишней хромосомой возникает трисомия (т. е. в клетке присутствует три гомологичные хромосомы), при оплодотворении гаметой без одной хромосомы возникает зигота с моносомией. Если моносомая зигота образуется по какой-либо аутосомной (не половой) хромосоме, то развитие организма прекращается на самых ранних стадиях развития.

Хромосомные мутации - это структурные изменения отдельных хромосом, как правило, видимые в световом микроскопе. В хромосомную мутацию вовлекается большое число (от десятков до нескольких сотен) генов, что приводит к изменению нормального диплоидного набора. Несмотря на то что хромосомные аберрации, как правило, не изменяют последовательность ДНК в специфических генах, изменение числа копий генов в геноме приводит к генетическому дисбалансу вследствие недостатка или избытка генетического материала. Различают две большие группы хромосомных мутаций: внутрихромосомные и межхромосомные.

Внутрихромосомные мутации — это аберрации в пределах одной хромосомы. К ним относятся:

делеции (от лат. deletio — уничтожение) - утрата одного из участков хромосомы, внутреннего или терминального. Это может обусловить нарушение эмбриогенеза и формирование множественных аномалий развития (например, деления в регионе короткого плеча 5-й хромосомы, обозначаемая как 5р-, приводит к недоразвитию гортани, порокам сердца, отставанию умственного развития). Этот симптомокомплекс известен как синдром «кошачьего крика», поскольку у больных детей из-за аномалии гортани плач напоминает кошачье мяуканье;

инверсии (от лат. inversio — перевертывание). В результате двух точек разрывов хромосомы образовавшийся фрагмент встраивается на прежнее место после поворота на 180°. В результате нарушается только порядок расположения генов;

дупликации (от лат duplicatio — удвоение) — удвоение (или умножение) какого-либо участка хромосомы (например, трисомия по одному из коротких плеч 9-й хромосомы обуслошшвает множественные пороки, включая микроцефалию, задержку физического, психического и интеллектуального развития).

Схемы наиболее частых хромосомных аберраций:
Делении: 1 - концевая; 2 - интерстициальная. Инверсии: 1 - перицентрическая (с захватом центромеры); 2 - парацентрическая (в пределах одного плеча хромосомы)

Межхромосомные мутации, или мутации перестройки — обмен фрагментами между негомологичными хромосомами. Такие мутации получили название транслокации (от лат. tгаns — за, через + locus — место). Это:

Реципрокная транслокация, когда две хромосомы обмениваются своими фрагментами;

Нереципрокная транслокация, когда фрагмент одной хромосомы транспортируется на другую;

- «центрическое» слияние (робертсоновская транслокация) - соединение двух акроцентрических хромосом в районе их центромер с потерей коротких плеч.

При поперечном разрыве хроматид через центромеры «сестринские» хроматиды становятся «зеркальными» плечами двух разных хромосом, содержащих одинаковые наборы генов. Такие хромосомы называют изохромосомами. Как внутрихромосомные (делеции, инверсии и дупликации), так и межхромосомные (транслокации) аберрации и изохромосомы связаны с физическими изменениями структуры хромосом, в том числе с механическими разломами.

Наследственная патология как результат наследственной изменчивости

Наличие общих видовых признаков позволяет объединять всех людей на земле в единый вид Homo sapiens. Тем не менее мы без труда, одним взглядом выделяем лицо знакомого нам человека в толпе незнакомых людей. Чрезвычайное разнообразие людей — как внутри групповое (например, разнообразие в пределах этноса), так и межгрупповое — обусловлено генетическим их отличием. В настоящее время считается, что вся внутривидовая изменчивость обусловлена различными генотипами, возникающими и поддерживаемыми естественным отбором.

Известно, что гаплоидный геном человека содержит 3,3х10 9 пар нуклеотидных остатков, что теоретически позволяет иметь до 6-10 млн генов. Вместе с тем данные современных исследований свидетельствуют, что в геноме человека содержится примерно 30-40 тыс. генов. Около трети всех генов имеют более чем один аллель, т. е. являются полиморфными.

Концепция наследственного полиморфизма была сформулирована Э. Фордом в 1940 г. для объяснения существования в популяции двух или более различающихся форм, когда частота наиболее редкой из них не может быть объяснена только мутационными событиями. Поскольку мутация гена является редким событием (1х10 6), частоту мутантного аллеля, составляющую более 1%, можно объяснить только его постепенным накоплением в популяции за счет селективных преимуществ носителей данной мутации.

Многочисленность расщепляющихся локусов, многочисленность аллелей в каждом из них наряду с явлением рекомбинации создает неисчерпаемое генетическое разнообразие человека. Расчеты свидетельствуют, что за всю историю человечества на земном шаре не было, нет и в обозримом будущем не встретится генетического повторения, т.е. каждый рожденный человек является уникальным явлением во Вселенной. Неповторимость генетической конституции во многом определяет особенности развития заболевания у каждого конкретного человека.

Человечество эволюционировало как группы изолированных популяций, длительное время проживающих в одних и тех же условиях окружающей среды, включая климатогеографические характеристики, характер питания, возбудителей болезней, культурные традиции и т.д. Это привело к закреплению в популяции специфических для каждой из них сочетаний нормальных аллелей, наиболее адекватных условиям среды. В связи с постепенным расширением ареала обитания, интенсивными миграциями, переселением народов возникают ситуации, когда полезные в определенных условиях сочетания конкретных нормальных генов в других условиях не обеспечивают оптимальное функционирование некоторых систем организма. Это приводит к тому, что часть наследственной изменчивости, обусловленная неблагоприятным сочетанием непатологических генов человека, становится основой развития так называемым болезней с наследственным предрасположением.

Кроме того, у человека как социального существа естественный отбор со временем протекал во все более специфических формах, что также расширяло наследственное разнообразие. Сохранялось то, что могло отметаться у животных, или, наоборот, терялось то, что животные сохраняли. Так, полноценное обеспечение потребностей в витамине С привело в процессе эволюции к утере гена L-гулонодактоноксидазы, катализирующей синтез аскорбиновой кислоты. В процессе эволюции человечество приобретало и нежелательные признаки, имеющие прямое отношение к патологии. Например, у человека в процессе эволюции появились гены, определяющие чувствительность к дифтерийному токсину или к вирусу полиомиелита.

Таким образом, у человека, как и у любого другого биологического вида, нет резкой грани между наследственной изменчивостью, ведущей к нормальным вариациям признаков, и наследственной изменчивостью, обусловливающей возникновение наследственных болезней. Человек, став биологическим видом Homo sapiens, как бы заплатил за «разумность» своего вида накоплением патологических мутаций. Это положение лежит в основе одной из главных концепций медицинской генетики об эволюционном накоплении патологических мутации в популяциях человека.

Наследственная изменчивость популяций человека, как поддерживаемая, так и уменьшаемая естественным отбором, формирует так называемый генетический груз.

Некоторые патологические мутации могут в течение исторически длительного времени сохраняться и распространяться в популяциях, обусловливая гак называемый сегрегационный генетический груз; другие патологические мутации возникают в каждом поколении как результат новых изменений наследственной структуры, создавая мутационный груз.

Отрицательный эффект генетического груза проявляется повышенной летальностью (гибель гамет, зигот, эмбрионов и детей), снижением фертильности (уменьшенное воспроизводство потомства), уменьшением продолжительности жизни, социальной дизадаптацией и инвалидизацией, а также обусловливает повышенную необходимость в медицинской помощи.

Английский генетик Дж.Ходдейн был первым, кто привлек внимание исследователей к существованию генетического груза, хотя сам термин был предложен Г. Меллером еще в конце 40-х гг. Смысл понятия «генетический груз» связан с высокой степенью генетической изменчивости, необходимой биологическому виду для того, чтобы иметь возможность приспосабливаться к изменяющимся условиям среды.

Изменчивость — способность живых организмов приобретать новые признаки и свойства. Благодаря изменчивости, организмы могут приспосабливаться к изменяющимся условиям среды обитания.

Различают две основные формы изменчивости : наследственная и ненаследственная.

Наследственная , или генотипическая , изменчивость — изменения признаков организма, обусловленные изменением генотипа. Она, в свою очередь, подразделяется на комбинативную и мутационную. Комбинативная изменчивость возникает вследствие перекомбинации наследственного материала (генов и хромосом) во время гаметогенеза и полового размножения. Мутационная изменчивость возникает в результате изменения структуры наследственного материала.

Ненаследственная , или фенотипическая , или модификационная , изменчивость — изменения признаков организма, не обусловленные изменением генотипа.

Мутации

Мутации — это стойкие внезапно возникшие изменения структуры наследственного материала на различных уровнях его организации, приводящие к изменению тех или иных признаков организма.

Термин «мутация» введен в науку Де Фризом. Им же создана мутационная теория , основные положения которой не утратили своего значения по сей день.

  1. Мутации возникают внезапно, скачкообразно, без всяких переходов.
  2. Мутации наследственны, т.е. стойко передаются из поколения в поколение.
  3. Мутации не образуют непрерывных рядов, не группируются вокруг среднего типа (как при модификационной изменчивости), они являются качественными изменениями.
  4. Мутации ненаправленны — мутировать может любой локус, вызывая изменения как незначительных, так и жизненно важных признаков в любом направлении.
  5. Одни и те же мутации могут возникать повторно.
  6. Мутации индивидуальны, то есть возникают у отдельных особей.

Процесс возникновения мутаций называют мутагенезом , а факторы среды, вызывающие появление мутаций, — мутагенами .

По типу клеток, в которых мутации произошли, различают: генеративные и соматические мутации.

Генеративные мутации возникают в половых клетках, не влияют на признаки данного организма, проявляются только в следующем поколении.

Соматические мутации возникают в соматических клетках, проявляются у данного организма и не передаются потомству при половом размножении. Сохранить соматические мутации можно только путем бесполого размножения (прежде всего вегетативного).

По адаптивному значению выделяют: полезные, вредные (летальные, полулетальные) и нейтральные мутации. Полезные — повышают жизнеспособность, летальные — вызывают гибель, полулетальные — снижают жизнеспособность, нейтральные — не влияют на жизнеспособность особей. Следует отметить, что одна и та же мутация в одних условиях может быть полезной, а в других — вредной.

По характеру проявления мутации могут быть доминантными и рецессивными . Если доминантная мутация является вредной, то она может вызвать гибель ее обладателя на ранних этапах онтогенеза. Рецессивные мутации не проявляются у гетерозигот, поэтому длительное время сохраняются в популяции в «скрытом» состоянии и образуют резерв наследственной изменчивости. При изменении условий среды обитания носители таких мутаций могут получить преимущество в борьбе за существование.

В зависимости от того, выявлен ли мутаген, вызвавший данную мутацию, или нет, различают индуцированные и спонтанные мутации. Обычно спонтанные мутации возникают естественным путем, индуцированные — вызываются искусственно.

В зависимости от уровня наследственного материала, на котором произошла мутация, выделяют: генные, хромосомные и геномные мутации.

Генные мутации

Генные мутации — изменения структуры генов. Поскольку ген представляет собой участок молекулы ДНК, то генная мутация представляет собой изменения в нуклеотидном составе этого участка. Генные мутации могут происходить в результате: 1) замены одного или нескольких нуклеотидов на другие; 2) вставки нуклеотидов; 3) потери нуклеотидов; 4) удвоения нуклеотидов; 5) изменения порядка чередования нуклеотидов. Эти мутации приводят к изменению аминокислотного состава полипептидной цепи и, следовательно, к изменению функциональной активности белковой молекулы. Благодаря генным мутациям возникают множественные аллели одного и того же гена.

Заболевания, причиной которых являются генные мутации, называются генными (фенилкетонурия, серповидноклеточная анемия, гемофилия и т.д.). Наследование генных болезней подчиняется законам Менделя.

Хромосомные мутации

Это изменения структуры хромосом. Перестройки могут осуществляться как в пределах одной хромосомы — внутрихромосомные мутации (делеция, инверсия, дупликация, инсерция), так и между хромосомами — межхромосомные мутации (транслокация).

Делеция — утрата участка хромосомы (2); инверсия — поворот участка хромосомы на 180° (4, 5); дупликация — удвоение одного и того же участка хромосомы (3); инсерция — перестановка участка (6).

Хромосомные мутации: 1 — парахромосом; 2 — делеция; 3 — дупликация; 4, 5 — инверсия; 6 — инсерция.

Транслокация — перенос участка одной хромосомы или целой хромосомы на другую хромосому.

Заболевания, причиной которых являются хромосомные мутации, относятся к категории хромосомных болезней . К таким заболеваниям относятся синдром «крика кошки» (46, 5р -), транслокационный вариант синдрома Дауна (46, 21 t21 21) и др.

Геномной мутацией называется изменение числа хромосом. Геномные мутации возникают в результате нарушения нормального хода митоза или мейоза.

Гаплоидия — уменьшение числа полных гаплоидных наборов хромосом.

Полиплоидия — увеличение числа полных гаплоидных наборов хромосом: триплоиды (3n ), тетраплоиды (4n ) и т.д.

Гетероплоидия (анеуплоидия ) — некратное увеличение или уменьшение числа хромосом. Чаще всего наблюдается уменьшение или увеличение числа хромосом на одну (реже две и более).

Наиболее вероятной причиной гетероплоидии является нерасхождение какой-либо пары гомологичных хромосом во время мейоза у кого-то из родителей. В этом случае одна из образовавшихся гамет содержит на одну хромосому меньше, а другая — на одну больше. Слияние таких гамет с нормальной гаплоидной гаметой при оплодотворении приводит к образованию зиготы с меньшим или большим числом хромосом по сравнению с диплоидным набором, характерным для данного вида: нулесомия (2n - 2), моносомия (2n - 1), трисомия (2n + 1), тетрасомия (2n + 2) и т.д.

На генетических схемах, приведенных ниже, показано, что рождение ребенка с синдромом Клайнфельтера или синдромом Тернера-Шерешевского можно объяснить нерасхождением половых хромосом во время анафазы 1 мейоза у матери или у отца.

1) Нерасхождение половых хромосом во время мейоза у матери

Р ♀46, XX × ♂46, XY
Типы гамет 24, XX 24, 0 23, X 23, Y
F 47, XXX
трисомия
по Х-хромосоме
47, XXY
синдром
Клайнфельтера
45, X0
синдром Тернера-
Шерешевского
45, Y0
гибель
зиготы

2) Нерасхождение половых хромосом во время мейоза у отца

Р ♀46, XX × ♂46, XY
Типы гамет 23, X 24, XY 22, 0
F 47, XXY
синдром
Клайнфельтера
45, X0
синдром Тернера-
Шерешевского

Заболевания, причиной которых являются геномные мутации, также относятся к категории хромосомных. Их наследование не подчиняется законам Менделя. Кроме вышеназванных синдромов Клайнфельтера или Тернера-Шерешевского, к таким болезням относятся синдромы Дауна (47, +21), Эдвардса (+18), Патау (47, +15).

Полиплодия характерна для растений. Получение полиплоидов широко используется в селекции растений.

Закон гомологических рядов наследственной изменчивости Н.И. Вавилова

«Виды и роды, генетически близкие, характеризуются сходными рядами наследственной изменчивости с такой правильностью, что, зная ряд форм в пределах одного вида, можно предвидеть нахождение параллельных форм у других видов и родов. Чем ближе генетически расположены в общей системе роды и виды, тем полнее сходство в рядах их изменчивости. Целые семейства растений в общем характеризуются определенным циклом изменчивости, проходящей через все роды и виды, составляющие семейство».

Этот закон можно проиллюстрировать на примере семейства Мятликовые, к которому относятся пшеница, рожь, ячмень, овес, просо и т.д. Так, черная окраска зерновки обнаружена у ржи, пшеницы, ячменя, кукурузы и других растений, удлиненная форма зерновки — у всех изученных видов семейства. Закон гомологических рядов в наследственной изменчивости позволил самому Н.И. Вавилову найти ряд форм ржи, ранее не известных, опираясь на наличие этих признаков у пшеницы. К ним относятся: остистые и безостые колосья, зерновки красной, белой, черной и фиолетовой окраски, мучнистое и стекловидное зерно и т.д.

Наследственное варьирование признаков * Рожь Пшеница Ячмень Овес Просо Сорго Кукуруза Рис Пырей
Зерно Окраска Черная + + + + + + +
Фиолетовая + + + + + +
Форма Округлая + + + + + + + + +
Удлиненная + + + + + + + + +
Биол. признаки Образ жизни Озимые + + + + +
Яровые + + + + + + + +

* Примечание . Знак «+» означает наличие наследственных форм, обладающих указанным признаком.

Открытый Н.И. Вавиловым закон справедлив не только для растений, но и для животных. Так, альбинизм встречается не только в разных группах млекопитающих, но и птиц, и других животных. Короткопалость наблюдается у человека, крупного рогатого скота, овец, собак, птиц, отсутствие перьев — у птиц, чешуи — у рыб, шерсти — у млекопитающих и т.д.

Закон гомологических рядов наследственной изменчивости имеет большое значение для селекции, поскольку позволяет предугадать наличие форм, не обнаруженных у данного вида, но характерного для близкородственных видов. Причем искомая форма может быть обнаружена в дикой природе или получена путем искусственного мутагенеза.

Искусственное получение мутаций

В природе постоянно идет спонтанный мутагенез, но спонтанные мутации — достаточно редкое явление, например, у дрозофилы мутация белых глаз образуется с частотой 1:100 000 гамет.

Факторы, воздействие которых на организм приводит к появлению мутаций, называются мутагенами . Обычно мутагены подразделяют на три группы. Для искусственного получения мутаций используются физические и химические мутагены.

Индуцированный мутагенез имеет большое значение, поскольку дает возможность создания ценного исходного материала для селекции, а также раскрывает пути создания средств защиты человека от действия мутагенных факторов.

Модификационная изменчивость

Модификационная изменчивость — это изменения признаков организмов, не обусловленные изменениями генотипа и возникающие под влиянием факторов внешней среды. Среда обитания играет большую роль в формировании признаков организмов. Каждый организм развивается и обитает в определенной среде, испытывая на себе действие ее факторов, способных изменять морфологические и физиологические свойства организмов, т.е. их фенотип.

Примером изменчивости признаков под действием факторов внешней среды является разная форма листьев у стрелолиста: погруженные в воду листья имеют лентовидную форму, листья, плавающие на поверхности воды, — округлую, а находящиеся в воздушной среде, — стреловидную. Под действием ультрафиолетовых лучей у людей (если они не альбиносы) появляется загар в результате накопления в коже меланина, причем у разных людей интенсивность окраски кожи различна.

Модификационная изменчивость характеризуется следующими основными свойствами: 1) ненаследуемость; 2) групповой характер изменений (особи одного вида, помещенные в одинаковые условия, приобретают сходные признаки); 3) соответствие изменений действию фактора среды; 4) зависимость пределов изменчивости от генотипа.

Несмотря на то, что под влиянием условий внешней среды признаки могут изменяться, эта изменчивость не беспредельна. Это объясняется тем, что генотип определяет конкретные границы, в пределах которых может происходить изменение признака. Степень варьирования признака, или пределы модификационной изменчивости, называют нормой реакции . Норма реакции выражается в совокупности фенотипов организмов, формирующихся на основе определенного генотипа под влиянием различных факторов среды. Как правило, количественные признаки (высота растений, урожайность, размер листьев, удойность коров, яйценоскость кур) имеют более широкую норму реакции, то есть могут изменяться в широких пределах, чем качественные признаки (цвет шерсти, жирность молока, строение цветка, группа крови). Знание нормы реакции имеет большое значение для практики сельского хозяйства.

Модификационная изменчивость многих признаков растений, животных и человека подчиняется общим закономерностям. Эти закономерности выявляются на основании анализа проявления признака у группы особей (n ). Степень выраженности изучаемого признака у членов выборочной совокупности различна. Каждое конкретное значение изучаемого признака называют вариантой и обозначают буквой v . Частота встречаемости отдельных вариант обозначается буквой p . При изучении изменчивости признака в выборочной совокупности составляется вариационный ряд, в котором особи располагаются по возрастанию показателя изучаемого признака.

Например, если взять 100 колосьев пшеницы (n = 100), подсчитать число колосков в колосе (v ) и число колосьев с данным количеством колосков, то вариационный ряд будет выглядеть следующим образом.

Варианта (v ) 14 15 16 17 18 19 20
Частота встречаемости (p ) 2 7 22 32 24 8 5

На основании вариационного ряда строится вариационная кривая — графическое отображение частоты встречаемости каждой варианты.

Среднее значение признака встречается чаще, а вариации, значительно отличающиеся от него, — реже. Это называется «нормальным распределением» . Кривая на графике бывает, как правило, симметричной.

Среднее значение признака подсчитывается по формуле:

где М средняя величина признака; ∑(v

Как возникают вредоносные гены?

Хотя основное свойство генов заключается в точном самокопировании, благодаря чему и происходит наследственная передача множества признаков от родителей к детям, свойство это не является абсолютным. Природа генетического материала двойственна. Гены обладают еще и способностью изменяться, приобретать новые свойства. Такие изменения генов называются мутациями. И именно мутации генов создают изменчивость, необходимую для эволюции живой материи, многообразия форм жизни. Мутации возникают в любых клетках организма, но передаваться потомству могут только гены половых клеток.

Причины мутаций заключаются в том, что многие факторы внешней среды, с которыми на протяжении жизни взаимодействует каждый организм, могут нарушать строгую упорядоченность процесса самовоспроизведения генов, хромосом в целом, приводить к ошибкам в наследовании. В экспериментах установлены следующие факторы, вызывающие мутации: ионизирующее излучение, химические вещества и высокая температура. Очевидно, что все эти факторы имеются и в естественной среде обитания человека (например, естественный фон радиации, космического излучения). Мутации существовали всегда как вполне обычное природное явление.

Будучи в своей сути ошибками в передаче генетического материала, мутации носят случайный и ненаправленный характер, то есть могут быть как полезными, так и вредными и относительно нейтральными для организма.

Полезные мутации закрепляются в ходе эволюции и составляют основу прогрессивного развития жизни на Земле, а вредные - снижающие жизнеспособность, являются как бы обратной стороной медали. Они и лежат в основе наследственных болезней во всем их многообразии.

Мутации бывают двух типов:

  • генные (на молекулярном уровне)
  • и хромосомные (меняющие число или структуру хромосом на клеточном уровне)

Как те, так и другие могут вызываться одними и теми же факторами.

Как часто возникают мутации?
Часто ли появление больного ребенка связано с новой мутацией?

Если бы мутации возникали слишком часто, то изменчивость в живой природе преобладала бы над наследственностью и никаких устойчивых форм жизни не существовало бы. С очевидностью логика подсказывает, что мутации являются редкими событиями, во всяком случае намного более редкими, чем возможность сохранения свойств генов при передаче от родителей к детям.

Реальная частота мутаций для отдельных генов человека составляет в среднем от 1:105 до 1:108. Это значит, что примерно одна из миллиона половых клеток в каждом поколении несет новую мутацию. Или, другими словами, хотя это и упрощение, можно сказать, что на миллион случаев нормальной передачи гена приходится один случай мутации. Важно то обстоятельство, что, однажды возникнув, та или иная новая мутация может затем передаваться в последующие поколения, то есть закрепляться механизмом наследования, поскольку обратные мутации, возвращающие ген в исходное состояние, столь же редки.

В популяциях соотношение в численности мутантов и унаследовавших вредоносный ген от родителей (сегрегантов) среди всех больных зависит как от типа наследования, так и от их способности оставлять потомство. При классических рецессивных заболеваниях вредная мутация может незаметно передаваться через множество поколений здоровых носителей до тех пор, пока в брак не вступят два носителя одного и того же вредного гена, и тогда практически каждый такой случай рождения больного ребенка связан с наследованием, а не с новой мутацией.

При доминантных же заболеваниях доля мутантов находится в обратной зависимости от детородной способности больных. Очевидно, что когда заболевание приводит к ранней смерти или неспособности больных иметь детей, то наследование заболевания от родителей невозможно. Если же заболевание не сказывается на продолжительности жизни или способности иметь детей, то, наоборот, будут преобладать унаследованные случаи, а новые мутации будут редки по сравнению с ними.

Например, при одной из форм карликовости (доминантной ахондроплазии) по социальным и биологическим причинам размножение карликов значительно ниже среднего, в этой группе населения примерно в 5 раз меньше детей по сравнению с другими. Если принять средний коэффициент размножения в норме за 1, то для карликов он будет равен 0,2. Это означает, что 80 % больных в каждом поколении - результат новой мутации, и только 20 % больных наследуют карликовость от родителей.

При наследственных заболеваниях, генетически сцепленных с полом, доля мутантов среди больных мальчиков и мужчин также зависит от относительной плодовитости больных, но здесь всегда будут преобладать случаи наследования от матерей, даже при тех болезнях, когда больные вообще не оставляют потомства. Максимальная доля новых мутаций при таких летальных заболеваниях не превышает 1/3 части случаев, поскольку на долю мужчин приходится именно одна треть Х-хромосом всего населения, а две трети их приходится на женщин, которые, как правило, бывают здоровыми.

Может ли у меня родиться ребенок с мутацией, если я получил повышенную дозу облучения?

Отрицательные последствия загрязнения окружающей среды как химического, так и радиоактивного - проблема века. Генетики сталкиваются с ней не так редко, как хотелось бы в широком спектре вопросов: от профессиональных вредностей до ухудшения экологической ситуации в результате аварий на атомных электростанциях. И понятна обеспокоенность, например людей, переживших чернобыльскую трагедию.

Генетические последствия загрязнения окружающей среды действительно связаны с увеличением частоты мутаций, в том числе и вредных, приводящих к наследственным болезням. Однако эти последствия, к счастью, не столь катастрофичны, чтобы говорить об опасности генетического вырождения человечества, по крайней мере на современном этапе. Кроме того, если рассматривать проблему относительно конкретных лиц и семей, то можно с уверенностью сказать, что риск рождения больного ребенка из-за облучения или иного вредного воздействия именно в результате мутации никогда не бывает высоким.

Частота мутаций хотя и повышается, но не настолько, чтобы превысить десятую, а то и сотую долю процента. Во всяком случае для любого человека, даже подвергшегося явному воздействию мутагенных факторов, риск отрицательных последствий для потомства намного меньше, чем свойственный всем людям генетический риск, связанный с носительством патологических генов, унаследованных от предков.

Кроме того, далеко не все мутации приводят к немедленному проявлению в виде заболевания. Во многих случаях, даже если ребенок получит новую мутацию от одного из родителей, он родится совершенно здоровым. Ведь значительная часть мутаций является рецессивными, то есть не проявляет своего вредного действия у носителей. А таких случаев, чтобы при исходно нормальных генах обоих родителей ребенок получил одну и ту же новую мутацию одновременно от отца и матери, практически не бывает. Вероятность подобного случая так ничтожно мала, что для ее реализации недостаточно всего населения Земли.

Из этого также следует, что повторное возникновение мутации в одной и той же семье практически нереально. Поэтому, если у здоровых родителей появился больной ребенок с доминантной мутацией, то их остальные дети, то есть братья и сестры больного, должны быть здоровыми. Однако для потомства больного ребенка риск унаследования заболевания составит 50 % в соответствии с классическими правилами.

Бывают ли отклонения от обычных правил наследования и с чем они связаны?

Да, бывают. Как исключение - иногда лишь в силу своей редкости, как, например, появление больных гемофилией женщин. Встречаются и чаще, но в любом случае отклонения обусловлены сложными и многочисленными взаимосвязями генов в организме и их взаимодействием с окружающей средой. По сути дела, исключения отражают все те же фундаментальные законы генетики, но на более сложном уровне.

Например, для многих доминантно наследуемых заболеваний характерна сильная изменчивость их выраженности, вплоть до того, что иногда симптомы заболевания у носителя патологического гена могут вообще отсутствовать. Это явление называется неполной пенетрантностью гена. Поэтому в родословных семей с доминантными заболеваниями иногда встречаются так называемые проскакивающие поколения, когда заведомые носители гена, имеющие как больных предков, так и больных потомков, практически здоровы.

В некоторых случаях при более тщательном обследовании таких носителей обнаруживаются хотя и минимальные, стертые, но вполне определенные проявления. Но бывает и так, что имеющимися в нашем распоряжении методами никаких проявлений патологического гена обнаружить не удается, несмотря на явные генетические доказательства того, что он есть у конкретного человека.

Причины этого явления изучены пока недостаточно. Считается, что вредный эффект мутантного гена может быть модифицирован и компенсирован другими генами или внешнесредовыми факторами, но конкретные механизмы такой модификации и компенсации при тех или иных заболеваниях неясны.

Бывает и так, что в некоторых семьях, в нескольких поколениях подряд передаются рецессивные заболевания так, что их можно спутать с доминантными. Если больные вступают в брак с носителями гена того же заболевания, то половина их детей также наследует "двойную дозу" гена - условие, необходимое для проявления заболевания. То же самое может произойти и в следующих поколениях, хотя такая "казуистика" встречается только при многократных кровнородственных браках.

Наконец, не носит абсолютного характера и деление признаков на доминантные и рецессивные. Иногда это деление просто условно. Один и тот же ген можно в одних случаях считать доминантным, а в других - рецессивным.

Применяя тонкие методы исследования, нередко можно распознать действие рецессивного гена в гетерозиготном состоянии, даже у совершенно здоровых носителей. Например, ген серповидноклеточного гемоглобина в гетерозиготном состоянии обусловливает серповидную форму эритроцитов, что не сказывается на здоровье человека, а в гомозиготном приводит к тяжелому заболеванию - серповидно-клеточной анемии.

В чем отличие генных и хромосомных мутаций.
Что такое хромосомные болезни?

Хромосомы являются носителями генетической информации на более сложном - клеточном уровне организации. Наследственные болезни могут быть вызваны и хромосомными дефектами, возникшими при образовании половых клеток.

Каждая хромосома содержит свой набор генов, располагающихся в строгой линейной последовательности, то есть те или иные гены располагаются не только в одних и тех же у всех людей хромосомах, но и в одних и тех же участках этих хромосом.

Нормальные клетки организма содержат строго определенное число парных хромосом (отсюда и парность находящихся в них генов). У человека в каждой клетке, кроме половых, 23 пары (46) хромосом. Половые клетки (яйцеклетки и сперматозоиды) содержат 23 непарные хромосомы - одинарный набор хромосом и генов, так как парные хромосомы расходятся в процессе клеточного деления. При оплодотворении, когда сперматозоид и яйцеклетка сливаются, из одной клетки (теперь уже с полным двойным набором хромосом и генов) развивается плод - эмбрион.

Но образование половых клеток происходит иногда с хромосомными "ошибками". Это мутации, приводящие к изменению числа или структуры хромосом в клетке. Вот почему оплодотворенная яйцеклетка может содержать избыток или недостаток хромосомного материала по сравнению с нормой. Очевидно, что такой хромосомный дисбаланс приводит к грубым нарушениям развития плода. Проявляется это в виде самопроизвольных выкидышей и мертворождений, наследственных болезней, синдромов, получивших название хромосомных.

Наиболее известным примером хромосомной болезни является болезнь Дауна (трисомия - появление лишней 21-й хромосомы). Симптомы этого заболевания легко выявляются по внешнему виду ребенка. Это и кожная складка во внутренних углах глаз, которая придает лицу монголоидный вид, и большой язык, короткие и толстые пальцы, при тщательном обследовании у таких детей обнаруживаются и пороки сердца, зрения и слуха, умственная отсталость.

К счастью, вероятность повторения в семье этой болезни и многих других хромосомных аномалий мала: в подавляющем большинстве случаев они обусловлены случайными мутациями. Кроме того, известно, что хромосомные мутации случайного характера чаще происходят в конце детородного периода.

Так, с увеличением возраста матерей увеличивается и вероятность хромосомной ошибки во время созревания яйцеклетки, и следовательно, такие женщины имеют повышенный риск рождения ребенка с хромосомными нарушениями. Если общая частота появления синдрома Дауна среди всех новорожденных детей составляет примерно 1:650, то для потомства молодых матерей (25 лет и моложе) она существенно ниже (менее 1:1000). Индивидуальный риск достигает среднего уровня к 30-летнему возрасту, выше он к 38 годам - 0,5 % (1:200), а к 39 годам - 1 % (1:100), в возрасте же свыше 40 лет возрастает до 2-3 %.

А могут ли быть здоровыми люди, имеющие хромосомные аномалии?

Да, могут при некоторых типах хромосомных мутаций, когда изменяется не число, а структура хромосом. Дело в том, что структурные перестройки в первоначальный момент своего появления могут оказаться сбалансированными - не сопровождаться избытком или недостатком хромосомного материала.

Например, могут обменяться своими участками, несущими разные гены, две непарные хромосомы, если при разрывах хромосом, иногда наблюдающихся в процессе клеточного деления, их концы становятся как бы липкими и склеиваются со свободными фрагментами других хромосом. В результате таких обменов (транслокаций) число хромосом в клетке сохраняется, но так возникают новые хромосомы, в которых нарушен принцип строгой парности генов.

Другая разновидность транслокаций - склеивание двух практически целых хромосом своими "липкими" концами, в результате чего общее число хромосом уменьшается на одну, хотя потери хромосомного материала не происходит. Человек - носитель такой транслокации, совершенно здоров, однако имеющиеся у него сбалансированные структурные перестройки уже не случайно, а вполне закономерно приводят к хромосомному дисбалансу в его потомстве, поскольку существенная часть половых клеток носителей таких транслокаций имеет лишний или, наоборот, недостаточный хромосомный материал.

Иногда такие носители вообще не могут иметь здоровых детей (правда, подобные ситуации исключительно редки). Например, у носителей подобной хромосомной аномалии - транслокации между двумя одинаковыми хромосомами (скажем, слияние концов той же 21-й пары), 50 % яйцеклеток или сперматозоидов (в зависимости от пола носителя) содержат 23 хромосомы, включая сдвоенную, а остальные 50 % содержат на одну хромосому меньше, чем полагается. При оплодотворении же клетки со сдвоенной хромосомой получат еще одну, 21-ю хромосому, и в результате будут рождаться дети с болезнью Дауна. Клетки же с недостающей 21-й хромосомой при оплодотворении дают нежизнеспособный плод, который спонтанно абортируется в первой половине беременности.

Носители транслокаций других типов могут иметь и здоровое потомство. Однако существует риск хромосомного дисбаланса, приводящего к грубой патологии развития в потомстве. Этот риск для потомства носителей структурных перестроек существенно выше, чем риск появления хромосомных аномалий в результате случайных новых мутаций.

Кроме транслокаций, существуют и другие типы структурных перестроек хромосом, приводящих к сходным негативным последствиям. К счастью, наследование хромосомных аномалий с высоким риском патологии встречается в жизни намного реже, чем случайные хромосомные мутации. Соотношение случаев хромосомных болезней среди их мутантных и наследственных форм, примерно 95 % и 5 % соответственно.

Сколько уже известно наследственных болезней?
Увеличивается или уменьшается их число в истории человечества?

Исходя из общебиологических представлений, можно было бы ожидать примерного соответствия между числом хромосом в организме и числом хромосомных болезней (и точно так же между числом генов и генных болезней). И действительно, в настоящее время известно несколько десятков хромосомных аномалий со специфическими клиническими симптомами (что фактически превышает число хромосом, потому что разные количественные и структурные изменения одной и той же хромосомы обусловливают разные болезни).

Намного больше и превышает 2000 число известных болезней, вызванных мутациями единичных генов (на молекулярном уровне). Подсчитано, что число генов во всех хромосомах человека намного больше. Многие из них не являются уникальными, так как представлены в виде многократно повторяющихся копий в разных хромосомах. Кроме того, многие мутации могут проявляться не в виде заболеваний, а приводить к эмбриональной гибели плода. Так что и число генных болезней примерно соответствует генетической структуре организма.

По мере развития медико-генетических исследований во всем мире число известных наследственных болезней постепенно увеличивается, а многие из них, ставшие классическими, были известны людям очень давно. Сейчас в генетической литературе наблюдается своеобразный бум публикаций о предположительно новых случаях и формах наследственных болезней и синдромов, многие из которых принято называть по именам первооткрывателей.

Каждые несколько лет известнейший американский генетик Виктор Мак-Кьюсик издает каталоги наследственных признаков и болезней человека, составляемые на основании компьютерного анализа данных мировой литературы. И всякий раз каждое последующее издание отличается от предыдущего увеличивающимся числом таких болезней. Очевидно, что тенденция эта будет сохраняться и далее, но скорее она отражает улучшение распознавания наследственных болезней и более пристальное внимание к ним, чем реальное увеличение их числа в процессе эволюции.

При спонтанно происходящих изменениях в ДНК, вызывающих в живых организмах различные патологии развития и роста, говорят о мутациях. Чтобы понять их сущность, необходимо больше узнать о причинах, приводящих к ним.

Генетики утверждают, что мутации свойственны всем организмам планеты без исключения (живым) и о том, что они существовали вечно, причем у одного организма их может быть несколько сотен. Однако различаются они степенью выраженности и характером проявления, которые определяют провоцирующие их факторы, а также затронутая генная цепочка.

Они бывают естественными и искусственными, т.е. вызванными в лабораторных условиях.

Наиболее частые факторы, приводящие к подобным изменениям с точки зрения генетиков, следующие:

    излучение ионизирующее и рентгеновские лучи. Воздействуя на организм, радиоактивное излучение сопровождается изменением в атомах заряда электронов. Это вызывает сбой в нормальном протекании процессов физико-химических и химико-биологических;

    очень высокая температура часто становится причиной изменений в случае, когда превышается порог чувствительности конкретного индивидуума;

    когда клетки делятся, могут возникать задержки, а также слишком быстрое их разрастание, что также становится толчком к негативным изменениям;

    «дефекты», возникающие в ДНК, при которых возвратить атом в первоначальное состояние не представляется возможным даже после восстановления.

Разновидности

На данный момент известно более тридцати видов отклонений в генофонде организма живого и генотипе, которые вызывают мутации. Одни достаточно безопасны и никак не проявляются внешне, т.е. не приводят к внутренним и внешним уродствам, поэтому живой организм не чувствует дискомфорта. Другие, напротив, сопровождаются сильнейшим дискомфортом.

Чтобы разобраться в том, что собой представляют мутации, следует ознакомиться с мутагенной классификацией, сгруппированной в соответствие с вызывающими дефекты причинами:

    генетические и соматические , различающиеся типологией клеток, подвергшихся изменениям. Соматическая характерна для клеток млекопитающих. Их передать можно исключительно по наследству (к примеру, различный цвет глаз). Ее формирование происходит в материнской утробе. Генетическая мутация характерна для растений и беспозвоночных. Вызывают ее негативные факторы окружающей среды. Примером проявления являются грибы, появляющиеся на деревьях и пр.;

    ядерные относятся к мутациям по месторасположению клеток, подвергшихся изменениям. Лечению такие варианты не поддаются, поскольку под непосредственное влияние попадают сами ДНК. Второй вид мутации – цитоплазматическая (или атавизмы). Он воздействует на любые жидкости, взаимодействующие с клеточным ядром и сами клетки. Подобные мутации излечимы;

    явные (естественные) и индуцированные (искусственные). Возникновение первых внезапно и без видимых причин. Вторые связаны со сбоем физических или химических процессов;

    генные и геномные , различающиеся своей выраженностью. В первом варианте изменения касаются нарушений, изменяющих последовательность нуклеотидного построения во вновьобразованных ДНК-цепочках (в качестве примера рассматривать можно фенилкетонурию).

    Во втором случае происходит изменение в количественном хромосомном наборе, а в качестве примера выступает болезнь Дауна, Коновалова-Вильсона и пр.

Значение

Вред мутаций для организма неоспорим, поскольку это не просто отражается на нормальном его развитии, но нередко приводит к летальному исходу. Полезными мутации быть не могут. Это касается и случаев появления сверхспособностей. Они всегда являются предпосылками для естественного отбора, приводят к появлению новых видов организмов (живых) или же к полному вымиранию.

Теперь понятно, что процессы, затрагивают структуру ДНК, приводя к незначительным или смертельно опасным нарушениям, влияют на нормальное развитие и жизнедеятельность организма.

Мутации - это изменения в ДНК клетки. Возникают под действием ультрафиолета, радиации (рентгеновских лучей) и т.п. Передаются по наследству, служат материалом для естественного отбора.


Генные мутации - изменение строения одного гена. Это изменение в последовательности нуклеотидов: выпадение, вставка, замена и т.п. Например, замена А на Т. Причины - нарушения при удвоении (репликации) ДНК. Примеры: серповидноклеточная анемия, фенилкетонурия.


Хромосомные мутации - изменение строения хромосом: выпадение участка, удвоение участка, поворот участка на 180 градусов, перенос участка на другую (негомологичную) хромосому и т.п. Причины - нарушения при кроссинговере. Пример: синдром кошачьего крика.


Геномные мутации - изменение количества хромосом. Причины - нарушения при расхождении хромосом.

  • Полиплоидия - кратные изменения (в несколько раз, например, 12 → 24). У животных не встречается, у растений приводит к увеличению размера.
  • Анеуплоидия - изменения на одну-две хромосомы. Например, одна лишняя двадцать первая хромосома приводит к синдрому Дауна (при этом общее количество хромосом - 47).

Цитоплазматические мутации - изменения в ДНК митохондрий и пластид. Передаются только по женской линии, т.к. митохондрии и пластиды из сперматозоидов в зиготу не попадают. Пример у растений - пестролистность.


Соматические - мутации в соматических клетках (клетках тела; могут быть четырех вышеназванных видов). При половом размножении по наследству не передаются. Передаются при вегетативном размножении у растений, при почковании и фрагментации у кишечнополостных (у гидры).

Приведённые ниже понятия, кроме двух, используются для описания последствий нарушения расположения нуклеотидов в участке ДНК, контролирующем синтез белка. Определите эти два понятия, «выпадающие» из общего списка, и запишите цифры, под которыми они указаны.
1) нарушение первичной структуры полипептида
2) расхождение хромосом
3) изменение функций белка
4) генная мутация
5) кроссинговер

Ответ


Выберите один, наиболее правильный вариант. Полиплоидные организмы возникают в результате
1) геномных мутаций

3) генных мутаций
4) комбинативной изменчивости

Ответ


Установите соответствие между характеристикой изменчивости и ее видом: 1) цитоплазматическая, 2) комбинативная
А) происходит при независимом расхождении хромосом в мейозе
Б) происходит в результате мутаций в ДНК митохондрий
В) возникает в результате перекреста хромосом
Г) проявляется в результате мутаций в ДНК пластид
Д) возникает при случайной встрече гамет

Ответ


Выберите один, наиболее правильный вариант. Синдром Дауна является результатом мутации
1) геномной
2) цитоплазматической
3) хромосомной
4) рецессивной

Ответ


1. Установите соответствие между характеристикой мутации и ее видом: 1) генная, 2) хромосомная, 3) геномная
А) изменение последовательности нуклеотидов в молекуле ДНК
Б) изменение строения хромосом
В) изменение числа хромосом в ядре
Г) полиплоидия
Д) изменение последовательности расположения генов

Ответ


2. Установите соответствие между характеристиками и типами мутаций: 1) генные, 2) геномные, 3) хромосомные. Запишите цифры 1-3 в порядке, соответствующем буквам.
А) делеция участка хромосомы
Б) изменение последовательности нуклеотидов в молекуле ДНК
В) кратное увеличение гаплоидного набора хромосом
Г) анеуплоидия
Д) изменение последовательности генов в хромосоме
Е) выпадение одного нуклеотида

Ответ


Выберите три варианта. Чем характеризуется геномная мутация?
1) изменением нуклеотидной последовательности ДНК
2) утратой одной хромосомы в диплоидном наборе
3) кратным увеличением числа хромосом
4) изменением структуры синтезируемых белков
5) удвоением участка хромосомы
6) изменением числа хромосом в кариотипе

Ответ


1. Ниже приведен перечень характеристик изменчивости. Все они, кроме двух, используются для описания характеристик геномной изменчивости. Найдите две характеристики, «выпадающие» из общего ряда, и запишите цифры, под которыми они указаны.
1) ограничена нормой реакции признака
2) число хромосом увеличено и кратно гаплоидному
3) появляется добавочная Х-хромосома
4) имеет групповой характер
5) наблюдается потеря Y-хромосомы

Ответ


2. Все приведённые ниже характеристики, кроме двух, используют для описания геномных мутаций. Определите две характеристики, «выпадающие» из общего списка, и запишите цифры, под которыми они указаны.
1) нарушение расхождения гомологичных хромосом при делении клетки
2) разрушение веретена деления
3) конъюгация гомологичных хромосом
4) изменение числа хромосом
5) увеличение числа нуклеотидов в генах

Ответ


3. Все приведённые ниже характеристики, кроме двух, используют для описания геномных мутаций. Определите две характеристики, «выпадающие» из общего списка, и запишите цифры, под которыми они указаны.
1) изменение последовательности нуклеотидов в молекуле ДНК
2) кратное увеличение хромосомного набора
3) уменьшение числа хромосом
4) удвоение участка хромосомы
5) нерасхождение гомологичных хромосом

Ответ


Выберите один, наиболее правильный вариант. Рецессивные генные мутации изменяют
1) последовательность этапов индивидуального развития
2) состав триплетов в участке ДНК
3) набор хромосом в соматических клетках
4) строение аутосом

Ответ


Выберите один, наиболее правильный вариант. Цитоплазматическая изменчивость связана с тем, что
1) нарушается мейотическое деление
2) ДНК митохондрий способна мутировать
3) появляются новые аллели в аутосомах
4) образуются гаметы, неспособные к оплодотворению

Ответ


1. Ниже приведен перечень характеристик изменчивости. Все они, кроме двух, используются для описания характеристик хромосомной изменчивости. Найдите две характеристики, «выпадающие» из общего ряда, и запишите цифры, под которыми они указаны.
1) потеря участка хромосомы
2) поворот участка хромосомы на 180 градусов
3) уменьшение числа хромосом в кариотипе
4) появление добавочной Х-хромосомы
5) перенос участка хромосомы на негомологичную хромосому

Ответ


2. Все приведённые ниже признаки, кроме двух, используются для описания хромосомной мутации. Определите два термина, «выпадающих» из общего списка, и запишите цифры, под которыми они указаны.
1) число хромосом увеличилось на 1-2
2) один нуклеотид в ДНК заменяется на другой
3) участок одной хромосомы перенесен на другую
4) произошло выпадение участка хромосомы
5) участок хромосомы перевернут на 180°

Ответ


3. Все приведенные ниже характеристики, кроме двух, используются для описания хромосомной изменчивости. Найдите две характеристики, «выпадающие» из общего ряда, и запишите цифры, под которыми они указаны.
1) умножение участка хромосомы в несколько раз
2) появление дополнительной аутосомы
3) изменение последовательности нуклеотидов
4) потеря концевого участка хромосомы
5) поворот гена в хромосоме на 180 градусов

Ответ


ФОРМИРУЕМ
1) удвоение одного и того же участка хромосомы
2) уменьшение числа хромосом в половых клетках
3) увеличение числа хромосом в соматических клетках

Выберите один, наиболее правильный вариант. К какому виду мутаций относят изменение структуры ДНК в митохондриях
1) геномной
2) хромосомной
3) цитоплазматической
4) комбинативной

Ответ


Выберите один, наиболее правильный вариант. Пестролистность у ночной красавицы и львиного зева определяется изменчивостью
1) комбинативной
2) хромосомной
3) цитоплазматической
4) генетической

Ответ


1. Ниже приведен перечень характеристик изменчивости. Все они, кроме двух, используются для описания характеристик генной изменчивости. Найдите две характеристики, «выпадающие» из общего ряда, и запишите цифры, под которыми они указаны.
1) обусловлена сочетанием гамет при оплодотворении
2) обусловлена изменением последовательности нуклеотидов в триплете
3) формируется при рекомбинации генов при кроссинговере
4) характеризуется изменениями внутри гена
5) формируется при изменении нуклеотидной последовательности

Ответ


2. Все приведенные ниже характеристики, кроме двух, служат причинами генной мутации. Определите эти два понятия, «выпадающие» из общего списка, и запишите цифры, под которыми они указаны.
1) конъюгация гомологичных хромосом и обмен генами между ними
2) замена одного нуклеотида в ДНК на другой
3) изменение последовательности соединения нуклеотидов
4) появление в генотипе лишней хромосомы
5) выпадение одного триплета в участке ДНК, кодирующей первичную структуру белка

Ответ


3. Все приведённые ниже характеристики, кроме двух, используют для описания генных мутаций. Определите две характеристики, «выпадающие» из общего списка, и запишите цифры, под которыми они указаны.
1) замена пары нуклеотидов
2) возникновение стоп-кодона внутри гена
3) удвоение числа отдельных нуклеотидов в ДНК
4) увеличение числа хромосом
5) потеря участка хромосомы

Ответ


4. Все приведённые ниже характеристики, кроме двух, используют для описания генных мутаций. Определите две характеристики, «выпадающие» из общего списка, и запишите цифры, под которыми они указаны.
1) добавление одного триплета в ДНК
2) увеличение числа аутосом
3) изменение последовательности нуклеотидов в ДНК
4) потеря отдельных нуклеотидов в ДНК
5) кратное увеличение числа хромосом

Ответ


5. Все приведённые ниже характеристики, кроме двух, типичны для генных мутаций. Определите две характеристики, «выпадающие» из общего списка, и запишите цифры, под которыми они указаны.
1) возникновение полиплоидных форм
2) случайное удвоение нуклеотидов в гене
3) потеря одного триплета в процессе репликации
4) образование новых аллелей одного гена
5) нарушение расхождения гомологичных хромосом в мейозе

Ответ


ФОРМИРУЕМ 6:
1) осуществляется перенос участка одной хромосомы на другую
2) возникает в процессе репликации ДНК
3) происходит выпадение участка хромосомы

Выберите один, наиболее правильный вариант. Полиплоидные сорта пшеницы - это результат изменчивости
1) хромосомной
2) модификационной
3) генной
4) геномной

Ответ


Выберите один, наиболее правильный вариант. Получение селекционерами сортов полиплоидной пшеницы возможно благодаря мутации
1) цитоплазматической
2) генной
3) хромосомной
4) геномной

Ответ


Установите соответствие между характеристиками и мутациями: 1) геномная, 2) хромосомная. Запишите цифры 1 и 2 в правильном порядке.
А) кратное увеличение числа хромосом
Б) поворот участка хромосомы на 180 градусов
В) обмен участками негомологичных хромосом
Г) выпадение центрального участка хромосомы
Д) удвоение участка хромосомы
Е) некратное изменение числа хромосом

Ответ


Выберите один, наиболее правильный вариант. Появление разных аллелей одного гена происходит в результате
1) непрямого деления клетки
2) модификационной изменчивости
3) мутационного процесса
4) комбинативной изменчивости

Ответ


Все перечисленные ниже термины, кроме двух, используются при классификации мутаций по изменению генетического материала. Определите два термина, «выпадающих» из общего списка, и запишите цифры, под которыми они указаны.
1) геномные
2) генеративные
3) хромосомные
4) спонтанные
5) генные

Ответ


Установите соответствие между типами мутаций и их характеристиками и примерами: 1) геномные, 2) хромосомные. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) утеря или появление лишних хромосом в результате нарушения мейоза
Б) приводят к нарушению функционирования гена
В) примером является полиплоидия у простейших и растений
Г) удвоение или потеря участка хромосомы
Д) ярким примером является синдром Дауна

Ответ


Установите соответствие между категориями наследственных болезней и их примерами: 1) генные, 2) хромосомные. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) гемофилия
Б) альбинизм
В) дальтонизм
Г) синдром «кошачьего крика»
Д) фенилкетонурия

Ответ


Найдите три ошибки в приведённом тексте и укажите номера предложений с ошибками. (1) Мутации – это случайно возникшие стойкие изменения генотипа. (2) Генные мутации – это результат «ошибок», возникающих в процессе удвоения молекул ДНК. (3) Геномными называют мутации, которые ведут к изменению структуры хромосом. (4) Многие культурные растения являются полиплоидами. (5) Полиплоидные клетки содержат одну–три лишние хромосомы. (6) Полиплоидные растения характеризуются более мощным ростом и крупными размерами. (7) Полиплоидию широко используют как в селекции растений, так и в селекции животных.

Ответ


Проанализируйте таблицу «Виды изменчивости». Для каждой ячейки, обозначенной буквой, выберите соответствующее понятие или соответствующий пример из предложенного списка.
1) соматические
2) генные
3) замена одного нуклеотида на другой
4) удвоение гена в участке хромосомы
5) добавление или выпадение нуклеотидов
6) гемофилия
7) дальтонизм
8) трисомия в хромосомном наборе

Ответ

© Д.В.Поздняков, 2009-2019