Меню
Бесплатно
Главная  /  Медикаменты  /  Что такое обмен веществ. Как восстановить правильный обмен веществ? Как избежать нарушения метаболизма

Что такое обмен веществ. Как восстановить правильный обмен веществ? Как избежать нарушения метаболизма


Что такое обмен веществ, как улучшить его скорость и эффективность - этими вопросами задается каждый человек, который озабочен вопросами снижения массы тела. Мы предлагаем вам узнать, что такое обмен веществ в организме человека и какова его роль в формировании здоровья на клеточном уровне. Улучшить обмен веществ в организме можно с помощью простых, доступных вам методов, о большинстве из них мы расскажем далее.

Значение и роль обмена веществ: характеристики и функции

Обмен веществ - главное свойство, отличающее живое от неживого. Он характеризуется процессами синтеза и распада, которые непрерывно протекают в организме и между которыми поддерживается постоянное равновесие. Именно в этом заключается главная роль обмена веществ, в ходе которого происходит трансформация всех употребляемых веществ.

С остановкой обмена веществ прекращается и жизнь, что приводит к разложению белков, которые являются носителями важнейших функций человеческого организма: структурной, двигательной, защитной, ферментативной и др. Поэтому переоценить значение обмена веществ достаточно сложно, чем он лучше, тем более здоровым является организм.

Функции обмена веществ, или метаболизма (это слово пришло к нам из греческого языка, где оно означает «превращение, изменение») - процесс непрерывных превращений химических веществ в организме, обеспечивающих его рост, развитие, обновление клеток и жизнедеятельность в целом.

Характеристика обмена веществ включает в себя не только описание данного процесса, но и зависимость других функций организма. От скорости обменных процессов зависят:

  • активность расхода энергии, поступающей с пищей. Так, при сниженной скорости метаболизма в организме преобладают процессы, направленные на образование энергетических запасов в виде жировых отложений;
  • интенсивность кровообращения;
  • состояние иммунитета;
  • гормональный фон . И напротив, состояние гормонального фона при некоторых эндокринных расстройствах: заболеваниях щитовидной железы, нарушениях функции гипофиза и т. д. - способствует замедлению обменных процессов.

Как наладить обмен веществ организма

Перед тем как наладить обмен веществ организма важно пройти обследование под руководством врача эндокринолога. Нужно исключить заболевания эндокринной системы.

С помощью чего можно увеличить скорость обмена веществ:

  • режима питания;
  • состава пищи;
  • режима сна и бодрствования;
  • мышечного тонуса.

Рассмотрим каждый из этих факторов.

Правильное питание и обмен веществ

Пища служит единственным источником энергии и строительного материала для формирования сложных структур организма. Чтобы человеческое тело непрерывно обновлялось, требуется регулярно потреблять необходимые пищевые вещества. Обмен веществ и питание связаны между собой тесным образом, одно зависит напрямую от другого. Организация правильного питания для обмена веществ - это залог избавления организма от ненужных шлаков и токсинов, недостатка энергии и многих других проблем.

Стабильная скорость обменных процессов в организме поддерживается благодаря частому дробному питанию и небольшим порциям.

Основная роль при этом принадлежит завтраку: углеводный гарнир (каша, картофель, макаронные изделия или блинчики, оладьи), заполняющий четверть тарелки, служит источником энергии и сил на весь день.

Самая высокая скорость обменных процессов отмечается с 5-6 часов утра до 12 дня. Ее можно поддержать, полноценно позавтракав.

Ешьте пять раз в день порциями по 300 -500 ккал через каждые четыре часа и никогда не пропускайте завтрак.

Самая высокая скорость обменных процессов в организме отмечается в период с 5-6 часов утра до 12 дня. Если вы систематически просыпаете и отказываетесь от полноценного завтрака, не удивляйтесь, что вам сложно поддерживать форму. После обеда скорость обмена веществ постепенно снижается, поэтому последний основной прием пищи - ужин - должен быть легким и состоять из нежирного нежареного белкового блюда, приготовленного из курицы, рыбы, творога или яичного белка, и овощного гарнира. Легкий овощной суп вместо гарнира только приветствуется. Ужинать следует не позднее, чем за четыре часа до сна. И за час до сна можете позволить себе йогурт или кефир.

Если начинать день с полноценного завтрака, сжигание жира ускоряется примерно на 10 %. Отказ от утреннего приема пищи даст прямо противоположный эффект обмен веществ продолжит дремать, пока вы не поедите.

Таким образом, обедать, полдничать и ужинать тоже важно вовремя. Как бы банально это ни прозвучало, дробное питание благотворно влияет на метаболизм. На переработку еды уходит 10 % калорий, которые мы тратим за день. Частые приемы пищи заставляют организм постоянно пребывать в рабочем состоянии - его деятельность не прерывается и не замедляется. Поэтому нужно есть пять раз в день небольшими порциями, приблизительно по 300-500 ккал. Перерыв между трапезами не должен превышать четырех часов. В этом случае лишний жир не будет накапливаться в организме.

Только не уменьшайте порции до размеров чайного блюдца и не устраивайте себе дни голодания. Почему-то в нашем обществе стойко держится миф, что голодание помогает нормализовать обмен веществ. Это не так.

Любые резкие перемены и ограничения в питании только мешают организму работать. Когда в желудок поступает слишком мало пищи, тело начинает экономить энергию. Если поголодать несколько дней, метаболизм может так замедлиться, что вы не потратите и 1000 ккал за сутки. В итоге голодающие люди худеют лишь поначалу, а потом этот процесс останавливается. И перезапустить его бывает очень и очень сложно.

Особенности обмена веществ

Особенности обмена веществ заключаются в том, что скорость процессов напрямую зависит от количества биологически активных веществ, и микроэлементов, поступающих с пищей. Витамины и микроэлементы входят в состав различных ферментов и являются катализаторами, то есть ускорителями, многих биохимических процессов в организме. Поэтому в рационе ежедневно должны присутствовать овощи и фрукты в любом виде. Обязательно включайте в меню рыбу и морепродукты: морскую капусту и другие водоросли и пр. Только не стоит чрезмерно увлекаться креветками, так как в них много холестерина. Высокое содержание йода в морепродуктах положительно влияет на скорость метаболизма. Йод также содержится в моркови, руколе, цельнозерновых продуктах и т. д. Но, при некоторых заболеваниях щитовидной железы потребление йода нужно согласовывать с лечащим врачом.

Витамины и ускоряют многие биохимические процессы в организме. Поэтому следует ежедневно есть фрукты, овощи и морепродукты и пару раз в год принимать поливитамины.

Обмен веществ и сон

Полноценный сон - в идеале семичасовой - с пробуждением до восьми утра позволяет поддерживать стабильную скорость обмена веществ и сохранять стройную фигуру. Многие активные процессы, например расщепление жира, происходят в организме во время сна. И худеем мы именно во сне. У современного человека обмен веществ и сон взаимосвязаны, поскольку в течение рабочего дня и бодрствования слишком много энергии уходит на переработку поступающей информации.

Чем меньше мы спим, тем меньше расщепляются жировые запасы. Поздние обильные приемы пищи также препятствуют этому процессу.

Если же плотно поужинать перед сном, то ночью начнут интенсивно откладываться жировые запасы. За их образование отвечает гормон инсулин, уровень которого повышается после приема пищи, причем сладкие блюда способствуют большему его выделению. Если вам по каким-либо причинам приходится, есть поздно вечером, отдавайте предпочтение несладким продуктам: овощам, кефиру, творогу. Проще говоря, не ешьте сладкое на ночь. Лишь после того как снижается активность инсулина, в работу включается соматотропный гормон, или гормон роста, - он-то и участвует в расщеплении жировых запасов. Но работает он только ночью в фазе глубокого сна, это необходимо организму, чтобы извлечь энергию на грядущий день.

Статья прочитана 19 229 раз(a).

Общее представление о метаболизме органических веществ.
Что такое метаболизм? Понятие метаболизма. Методы исследования.
Метаболизм - значение слова. Метаболизм углеводов и липоидов.

Метаболизм белков

МЕТАБОЛИЗМ - этообмен веществ, химические превращения, протекающие от момента поступления питательных веществ в живой организм до момента, когда конечные продукты этих превращений выделяются во внешнюю среду. К метаболизму относятся все реакции, в результате которых строятся структурные элементы клеток и тканей, и процессы, в которых из содержащихся в клетках веществ извлекается энергия. Иногда для удобства рассматривают по отдельности две стороны метаболизма – анаболизм и катаболизм, т.е. процессы созидания органических веществ и процессы их разрушения. Анаболические процессы обычно связаны с затратой энергии и приводят к образованию сложных молекул из более простых, катаболические же сопровождаются высвобождением энергии и заканчиваются образованием таких конечных продуктов (отходов) метаболизма, как мочевина, диоксид углерода, аммиак и вода.

Клеточный метаболизм.

Живая клетка – это высокоорганизованная система. В ней имеются различные структуры, а также ферменты, способные их разрушить. Содержатся в ней и крупные макромолекулы, которые могут распадаться на более мелкие компоненты в результате гидролиза (расщепления под действием воды). В клетке обычно много калия и очень мало натрия, хотя клетка существует в среде, где натрия много, а калия относительно мало, и клеточная мембрана легко проницаема для обоих ионов. Следовательно, клетка – это химическая система, весьма далекая от равновесия. Равновесие наступает только в процессе посмертного автолиза (само переваривания под действием собственных ферментов).

Потребность в энергии.

Чтобы удержать систему в состоянии, далеком от химического равновесия, требуется производить работу, а для этого необходима энергия. Получение этой энергии и выполнение этой работы – непременное условие для того, чтобы клетка оставалась в своем стационарном (нормальном) состоянии, далеком от равновесия. Одновременно в ней выполняется и иная работа, связанная со взаимодействием со средой, например: в мышечных клетках – сокращение; в нервных клетках – проведение нервного импульса; в клетках почек – образование мочи, значительно отличающейся по своему составу от плазмы крови; в специализированных клетках желудочно-кишечного тракта – синтез и выделение пищеварительных ферментов; в клетках эндокринных желез – секреция гормонов; в клетках светляков – свечение; в клетках некоторых рыб – генерирование электрических разрядов и т.д.

Источники энергии.

В любом из перечисленных выше примеров непосредственным источником энергии, которую клетка использует для производства работы, служит энергия, заключенная в структуре аденозинтрифосфата (АТФ). В силу особенностей своей структуры это соединение богато энергией, и разрыв связей между его фосфатными группами может происходить таким образом, что высвобождающаяся энергия используется для производства работы. Однако энергия не может стать доступной для клетки при простом гидролитическом разрыве фосфатных связей АТФ: в этом случае она расходуется впустую, выделяясь в виде тепла. Процесс должен состоять из двух последовательных этапов, в каждом из которых участвует промежуточный продукт, обозначенный здесь X–Ф (в приведенных уравнениях X и Y означают два разных органических вещества; Ф – фосфат; АДФ – аденозиндифосфат).

Термин «обмен веществ» вошел в повседневную жизнь с тех пор, как врачи стали связывать избыточный или недостаточный вес, чрезмерную нервозность или, наоборот, вялость больного с повышенным или пониженным обменом. Для суждения об интенсивности метаболизма ставят тест на «основной обмен». Основной обмен – это показатель способности организма вырабатывать энергию. Тест проводят натощак в состоянии покоя; измеряют поглощение кислорода (О2) и выделение диоксида углерода (СО2). Сопоставляя эти величины, определяют, насколько полно организм использует («сжигает») питательные вещества. На интенсивность метаболизма влияют гормоны щитовидной железы, поэтому врачи при диагностике заболеваний, связанных с нарушениями обмена, в последнее время все чаще измеряют уровень этих гормонов в крови.

Методы исследования метаболизма.

При изучении метаболизма какого-нибудь одного из питательных веществ прослеживают все его превращения от той формы, в какой оно поступает в организм, до конечных продуктов, выводимых из организма. В таких исследованиях применяется крайне разнообразный набор биохимических методов. Использование интактных животных или органов. Животному вводят изучаемое соединение, а затем в его моче и экскрементах определяют возможные продукты превращений (метаболиты) этого вещества. Более определенную информацию можно получить, исследуя метаболизм определенного органа, например печени или мозга. В этих случаях вещество вводят в соответствующий кровеносный сосуд, а метаболиты определяют в крови, оттекающей от данного органа. Поскольку такого рода процедуры сопряжены с большими трудностями, часто для исследования используют тонкие срезы органов. Их инкубируют при комнатной температуре или при температуре тела в растворах с добавкой того вещества, метаболизм которого изучают. Клетки в таких препаратах не повреждены, и так как срезы очень тонкие, вещество легко проникает в клетки и легко выходит из них. Иногда затруднения возникают из-за слишком медленного прохождения вещества сквозь клеточные мембраны. В этих случаях ткани измельчают, чтобы разрушить мембраны, и с изучаемым веществом инкубируют клеточную кашицу. Именно в таких опытах было показано, что все живые клетки окисляют глюкозу до СО2 и воды и что только ткань печени способна синтезировать мочевину.

Использование клеток.

Даже клетки представляют собой очень сложно организованные системы. В них имеется ядро, а в окружающей его цитоплазме находятся более мелкие тельца, т.н. органеллы, различных размеров и консистенции. С помощью соответствующей методики ткань можно «гомогенизировать», а затем подвергнуть дифференциальному центрифугированию (разделению) и получить препараты, содержащие только митохондрии, только микросомы или прозрачную жидкость – цитоплазму. Эти препараты можно по отдельности инкубировать с тем соединением, метаболизм которого изучается, и таким путем установить, какие именно субклеточные структуры участвуют в его последовательных превращениях. Известны случаи, когда начальная реакция протекает в цитоплазме, ее продукт подвергается превращению в микросомах, а продукт этого превращения вступает в новую реакцию уже в митохондриях. Инкубация изучаемого вещества с живыми клетками или с гомогенатом ткани обычно не выявляет отдельные этапы его метаболизма, и только последовательные эксперименты, в которых для инкубации используются те или иные субклеточные структуры, позволяют понять всю цепочку событий.

Использование радиоактивных изотопов.

Для изучения метаболизма какого-либо вещества необходимы: 1) соответствующие аналитические методы для определения этого вещества и его метаболитов; и 2) методы, позволяющие отличать добавленное вещество от того же вещества, уже присутствующего в данном биологическом препарате. Эти требования служили главным препятствием при изучении метаболизма до тех пор, пока не были открыты радиоактивные изотопы элементов и в первую очередь радиоактивный углерод 14C. С появлением соединений, «меченных» 14C, а также приборов для измерения слабой радиоактивности эти трудности были преодолены. Если к биологическому препарату, например к суспензии митохондрий, добавляют меченную 14C жирную кислоту, то никаких специальных анализов для определения продуктов ее превращений не требуется; чтобы оценить скорость ее использования, достаточно просто измерять радиоактивность последовательно получаемых митохондриальных фракций. Эта же методика позволяет легко отличать молекулы радиоактивной жирной кислоты, введенной экспериментатором, от молекул жирной кислоты, уже присутствовавших в митохондриях к началу эксперимента.

Хроматография и электрофорез.

В дополнение к вышеупомянутым требованиям необходимы и методы, позволяющие разделять смеси, состоящие из малых количеств органических веществ. Важнейший из них – хроматография, в основе которой лежит феномен адсорбции. Разделение компонентов смеси проводят при этом либо на бумаге, либо путем адсорбции на сорбенте, которым заполняют колонки (длинные стеклянные трубки), с последующей постепенной элюцией (вымыванием) каждого из компонентов.

Разделение методом электрофореза зависит от знака и числа зарядов ионизированных молекул. Электрофорез проводят на бумаге или на каком-нибудь инертном (неактивном) носителе, таком, как крахмал, целлюлоза или каучук. Высокочувствительный и эффективный метод разделения – газовая хроматография. Им пользуются в тех случаях, когда подлежащие разделению вещества находятся в газообразном состоянии или могут быть в него переведены.

Выделение ферментов.

Последнее место в описываемом ряду – животное, орган, тканевой срез, гомогенат и фракция клеточных органелл – занимает фермент, способный катализировать определенную химическую реакцию. Выделение ферментов в очищенном виде – важный раздел в изучении метаболизма.

Сочетание перечисленных методов позволило проследить главные метаболические пути у большей части организмов (в том числе у человека), установить, где именно эти различные процессы протекают, и выяснить последовательные этапы главных метаболических путей. К настоящему времени известны тысячи отдельных биохимических реакций, изучены участвующие в них ферменты.

Поскольку практически для любого проявления жизнедеятельности клеток необходим АТФ, неудивительно, что метаболическая активность живых клеток направлена в первую очередь на синтез АТФ. Этой цели служат различные сложные последовательности реакций, в которых используется потенциальная химическая энергия, заключенная в молекулах углеводов и жиров (липидов).

МЕТАБОЛИЗМ УГЛЕВОДОВ И ЛИПОИДОВ

Синтез АТФ. Анаэробный метаболизм (без участия кислорода).

Главная роль углеводов и липидов в клеточном метаболизме состоит в том, что их расщепление на более простые соединения обеспечивает синтез АТФ. Несомненно, что те же процессы протекали и в первых, самых примитивных клетках. Однако в атмосфере, лишенной кислорода, полное окисление углеводов и жиров до CO2 было невозможно. У этих примитивных клеток имелись все же механизмы, с помощью которых перестройка структуры молекулы глюкозы обеспечивала синтез небольших количеств АТФ. Речь идет о процессах, которые у микроорганизмов называют брожением. Лучше всего изучено сбраживание глюкозы до этилового спирта и CO2 у дрожжей.

В ходе 11 последовательных реакций, необходимых для того, чтобы завершилось это превращение, образуется ряд промежуточных продуктов, представляющих собой эфиры фосфорной кислоты (фосфаты). Их фосфатная группа переносится на аденозиндифосфат (АДФ) с образованием АТФ. Чистый выход АТФ составляет 2 молекулы АТФ на каждую молекулу глюкозы, расщепленную в процессе брожения. Аналогичные процессы происходят во всех живых клетках; поскольку они поставляют необходимую для жизнедеятельности энергию, их иногда (не вполне корректно) называют анаэробным дыханием клеток.

У млекопитающих, в том числе у человека, такой процесс называется гликолизом и его конечным продуктом является молочная кислота, а не спирт и CO2. Вся последовательность реакций гликолиза, за исключением двух последних этапов, полностью идентична процессу, протекающему в дрожжевых клетках.

Аэробный метаболизм (с использованием кислорода).

С появлением в атмосфере кислорода, источником которого послужил, очевидно, фотосинтез растений, в ходе эволюции развился механизм, обеспечивающий полное окисление глюкозы до CO2 и воды, – аэробный процесс, в котором чистый выход АТФ составляет 38 молекул АТФ на каждую окисленную молекулу глюкозы. Этот процесс потребления клетками кислорода для образования богатых энергией соединений известен как клеточное дыхание (аэробное). В отличие от анаэробного процесса, осуществляемого ферментами цитоплазмы, окислительные процессы протекают в митохондриях. В митохондриях пировиноградная кислота – промежуточный продукт, образовавшийся в анаэробной фазе – окисляется до СО2 в шести последовательных реакциях, в каждой из которых пара электронов переносится на общий акцептор – кофермент никотинамидадениндинуклеотид (НАД). Эту последовательность реакций называют циклом трикарбоновых кислот, циклом лимонной кислоты или циклом Кребса. Из каждой молекулы глюкозы образуется 2 молекулы пировиноградной кислоты; 12 пар электронов отщепляется от молекулы глюкозы в ходе ее окисления.

Липиды как источник энергии.

Жирные кислоты могут использоваться в качестве источника энергии приблизительно так же, как и углеводы. Окисление жирных кислот протекает путем последовательного отщепления от молекулы жирной кислоты двууглеродного фрагмента с образованием ацетилкофермента A (ацетил-КоА) и одновременной передачей двух пар электронов в цепь переноса электронов. Образовавшийся ацетил-КоА – нормальный компонент цикла трикарбоновых кислот, и в дальнейшем его судьба не отличается от судьбы ацетил-КоА, поставляемого углеводным обменом. Таким образом, механизмы синтеза АТФ при окислении, как жирных кислот, так и метаболитов глюкозы практически одинаковы.

Если организм животного получает энергию почти целиком за счет одного только окисления жирных кислот, а это бывает, например, при голодании или при сахарном диабете, то скорость образования ацетил-КоА превышает скорость его окисления в цикле трикарбоновых кислот. В этом случае лишние молекулы ацетил-КоА реагируют друг с другом, в результате чего образуются в конечном счете ацетоуксусная и b-гидроксимасляная кислоты. Их накопление является причиной патологического состояния, т.н. кетоза (одного из видов ацидоза), который при тяжелом диабете может вызвать кому и смерть.

Запасание энергии.

Животные питаются нерегулярно, и их организму нужно как-то запасать заключенную в пище энергию, источником которой являются поглощенные животным углеводы и жиры. Жирные кислоты могут запасаться в виде нейтральных жиров либо в печени, либо в жировой ткани. Углеводы, поступая в большом количестве, в желудочно-кишечном тракте гидролизуются до глюкозы или иных сахаров, которые затем в печени превращаются в ту же глюкозу. Здесь из глюкозы синтезируется гигантский полимер гликоген путем присоединения друг к другу остатков глюкозы с отщеплением молекул воды (число остатков глюкозы в молекулах гликогена доходит до 30 000). Когда возникает потребность в энергии, гликоген вновь распадается до глюкозы в реакции, продуктом которой является глюкозофосфат. Этот глюкозофосфат направляется на путь гликолиза – процесса, составляющего часть пути окисления глюкозы. В печени глюкозофосфат может также подвергнуться гидролизу, и образующаяся глюкоза поступает в кровоток и доставляется кровью к клеткам в разных частях тела.

Синтез липидов из углеводов.

Если количество углеводов, поглощенных с пищей за один прием, больше того, какое может быть запасено в виде гликогена, то избыток углеводов превращается в жиры. Начальная последовательность реакций совпадает при этом с обычным окислительным путем, т.е. сначала из глюкозы образуется ацетил-КоА, но далее этот ацетил-КоА используется в цитоплазме клетки для синтеза длинноцепочечных жирных кислот. Процесс синтеза можно описать как обращение обычного процесса окисления жирных клеток. Затем жирные кислоты запасаются в виде нейтральных жиров (триглицеридов), отлагающихся в разных частях тела. Когда требуется энергия, нейтральные жиры подвергаются гидролизу и жирные кислоты поступают в кровь. Здесь они адсорбируются молекулами плазменных белков (альбуминов и глобулинов) и затем поглощаются клетками самых разных типов. Механизмов, способных осуществлять синтез глюкозы из жирных кислот, у животных нет, но у растений такие механизмы имеются.

Метаболизм липидов.

Липиды попадают в организм главным образом в форме триглицеридов жирных кислот. В кишечнике под действием ферментов поджелудочной железы они подвергаются гидролизу, продукты которого всасываются клетками стенки кишечника. Здесь из них вновь синтезируются нейтральные жиры, которые через лимфатическую систему поступают в кровь и либо транспортируются в печень, либо отлагаются в жировой ткани. Выше уже указывалось, что жирные кислоты могут также синтезироваться заново из углеводных предшественников. Следует отметить, что, хотя в клетках млекопитающих может происходить включение одной двойной связи в молекулы длинноцепочечных жирных кислот (между С–9 и С–10), включать вторую и третью двойную связь эти клетки неспособны. Поскольку жирные кислоты с двумя и тремя двойными связями играют важную роль в метаболизме млекопитающих, они в сущности являются витаминами. Поэтому линолевую (C18:2) и линоленовую (C18:3) кислоты называют незаменимыми жирными кислотами. В то же время в клетках млекопитающих в линоленовую кислоту может включаться четвертая двойная связь и путем удлинения углеродной цепи может образоваться арахидоновая кислота (C20:4), также необходимый участник метаболических процессов.

В процессе синтеза липидов остатки жирных кислот, связанные с коферментом А (ацил-КоА), переносятся на глицерофосфат – эфир фосфорной кислоты и глицерина. В результате образуется фосфатидная кислота – соединение, в котором одна гидроксильная группа глицерина этерифицирована фосфорной кислотой, а две группы – жирными кислотами. При образовании нейтральных жиров фосфорная кислота удаляется путем гидролиза, и ее место занимает третья жирная кислота в результате реакции с ацил-КоА. Кофермент А образуется из пантотеновой кислоты (одного из витаминов). В его молекуле имеется сульфгидрильная (– SH) группа, способная реагировать с кислотами с образованием тиоэфиров. При образовании фосфолипидов фосфатидная кислота реагирует непосредственно с активированным производным одного из азотистых оснований, таких, как холин, этаноламин или серин.

За исключением витамина D, все встречающиеся в организме животных стероиды (производные сложных спиртов) легко синтезируются самим организмом. Сюда относятся холестерин (холестерол), желчные кислоты, мужские и женские половые гормоны и гормоны надпочечников. В каждом случае исходным материалом для синтеза служит ацетил-КоА: из ацетильных групп путем многократно повторяющейся конденсации строится углеродный скелет синтезируемого соединения.

МЕТАБОЛИЗМ БЕЛКОВ

Синтез аминокислот. Растения и большинство микроорганизмов могут жить и расти в среде, в которой для их питания имеются только минеральные вещества, диоксид углерода и вода. Это значит, что все обнаруживаемые в них органические вещества эти организмы синтезируют сами. Встречающиеся во всех живых клетках белки построены из 21 вида аминокислот, соединенных в различной последовательности. Аминокислоты синтезируются живыми организмами. В каждом случае ряд химических реакций приводит к образованию a-кетокислоты. Одна такая a-кетокислота, а именно a-кетоглутаровая (обычный компонент цикла трикарбоновых кислот), участвует в связывании азота.

Азот глутаминовой кислоты может быть затем передан любой из других a-кетокислот с образованием соответствующей аминокислоты.

Организм человека и большинства других животных сохранил способность синтезировать все аминокислоты за исключением девяти т.н. незаменимых аминокислот. Поскольку кетокислоты, соответствующие этим девяти, не синтезируются, незаменимые аминокислоты должны поступать с пищей.

Синтез белков.

Аминокислоты нужны для биосинтеза белка. Процесс биосинтеза протекает обычно следующим образом. В цитоплазме клетки каждая аминокислота «активируется» в реакции с АТФ, а затем присоединяется к концевой группе молекулы рибонуклеиновой кислоты, специфичной именно для данной аминокислоты. Эта сложная молекула связывается с небольшим тельцем, т.н. рибосомой, в положении, определяемом более длинной молекулой рибонуклеиновой кислоты, прикрепленной к рибосоме. После того как все эти сложные молекулы соответствующим образом выстроились, связи между исходной аминокислотой и рибонуклеиновой кислотой разрываются и возникают связи между соседними аминокислотами – синтезируется специфичный белок. Процесс биосинтеза поставляет белки не только для роста организма или для секреции в среду. Все белки живых клеток со временем претерпевают распад до составляющих их аминокислот, и для поддержания жизни клетки должны синтезироваться вновь.

Синтез других азотсодержащих соединений.

В организме млекопитающих аминокислоты используются не только для биосинтеза белков, но и как исходный материал для синтеза многих азотсодержащих соединений. Аминокислота тирозин является предшественником гормонов адреналина и норадреналина. Простейшая аминокислота глицин служит исходным материалом для биосинтеза пуринов, входящих в состав нуклеиновых кислот, и порфиринов, входящих в состав цитохромов и гемоглобина. Аспарагиновая кислота – предшественник пиримидинов нуклеиновых кислот. Метильная группа метионина передается ряду других соединений в ходе биосинтеза креатина, холина и саркозина. При биосинтезе креатина от одного соединения к другому передается также и гуанидиновая группировка аргинина. Триптофан служит предшественником никотиновой кислоты, а из валина в растениях синтезируется такой витамин, как пантотеновая кислота. Все это лишь отдельные примеры использования аминокислот в процессах биосинтеза.

Азот, поглощаемый микроорганизмами и высшими растениями в виде иона аммония, расходуется почти целиком на образование аминокислот, из которых затем синтезируются многие азотсодержащие соединения живых клеток. Избыточных количеств азота ни растения, ни микроорганизмы не поглощают. В отличие от них, у животных количество поглощенного азота зависит от содержащихся в пище белков. Весь азот, поступивший в организм в виде аминокислот и не израсходованный в процессах биосинтеза, довольно быстро выводится из организма с мочой. Происходит это следующим образом. В печени неиспользованные аминокислоты передают свой азот a-кетоглутаровой кислоте с образованием глутаминовой кислоты, которая дезаминируется, высвобождая аммиак. Далее азот аммиака может либо на время запасаться путем синтеза глутамина, либо сразу же использоваться для синтеза мочевины, протекающего в печени.

У глутамина есть и другая роль. Он может подвергаться гидролизу в почках с высвобождением аммиака, который поступает в мочу в обмен на ионы натрия. Этот процесс крайне важен как средство поддержания кислотно-щелочного равновесия в организме животного. Почти весь аммиак, происходящий из аминокислот и, возможно, из других источников, превращается в печени в мочевину, так что свободного аммиака в крови обычно почти нет. Однако при некоторых условиях довольно значительные количества аммиака содержит моча. Этот аммиак образуется в почках из глутамина и переходит в мочу в обмен на ионы натрия, которые таким образом реадсорбируются и задерживаются в организме. Этот процесс усиливается при развитии ацидоза – состояния, при котором организм нуждается в дополнительных количествах катионов натрия для связывания избытка ионов бикарбоната в крови.

Избыточные количества пиримидинов тоже распадаются в печени через ряд реакций, в которых высвобождается аммиак. Что касается пуринов, то их избыток подвергается окислению с образованием мочевой кислоты, выделяющейся с мочой у человека и других приматов, но не у остальных млекопитающих. У птиц отсутствует механизм синтеза мочевины, и именно мочевая кислота, а не мочевина, является у них конечным продуктом обмена всех азотсодержащих соединений.

ОБЩИЕ ПРЕДСТАВЛЕНИЯ О МЕТАБОЛИЗМЕ ОРГАНИЧЕСКИХ ВЕЩЕСТВ

Можно сформулировать некоторые общие понятия, или «правила», касающиеся метаболизма. Приведенные ниже несколько главных «правил» позволяют лучше понять, как протекает и регулируется метаболизм.

1. Метаболические пути необратимы. Распад никогда не идет по пути, который являлся бы простым обращением реакций синтеза. В нем участвуют другие ферменты и другие промежуточные продукты. Нередко противоположно направленные процессы протекают в разных отсеках клетки. Так, жирные кислоты синтезируются в цитоплазме при участии одного набора ферментов, а окисляются в митохондриях при участии совсем другого набора.

2. Ферментов в живых клетках достаточно для того, чтобы все известные метаболические реакции могли протекать гораздо быстрее, чем это обычно наблюдается в организме. Следовательно, в клетках существуют какие-то регуляторные механизмы. Открыты разные типы таких механизмов.

а) Фактором, ограничивающим скорость метаболических превращений данного вещества, может быть поступление этого вещества в клетку; именно на этот процесс в таком случае и направлена регуляция. Роль инсулина, например, связана с тем, что он, по-видимому, облегчает проникновение глюкозы во все клетки, глюкоза же подвергается превращениям с той скоростью, с какой она поступает. Сходным образом проникновение железа и кальция из кишечника в кровь зависит от процессов, скорость которых регулируется.

б) Вещества далеко не всегда могут свободно переходить из одного клеточного отсека в другой; есть данные, что внутриклеточный перенос регулируется некоторыми стероидными гормонами.

в) Выявлено два типа сервомеханизмов «отрицательной обратной связи».

У бактерий были обнаружены примеры того, что присутствие продукта какой-нибудь последовательности реакций, например аминокислоты, подавляет биосинтез одного из ферментов, необходимых для образования этой аминокислоты.

В каждом случае фермент, биосинтез которого оказывается затронутым, был ответствен за первый «определяющий» этап (на схеме реакция 4) метаболического пути, ведущего к синтезу данной аминокислоты.

Второй механизм хорошо изучен у млекопитающих. Это простое ингибирование конечным продуктом (в нашем случае – аминокислотой) фермента, ответственного за первый «определяющий» этап метаболического пути.

Еще один тип регулирования посредством обратной связи действует в тех случаях, когда окисление промежуточных продуктов цикла трикарбоновых кислот сопряжено с образованием АТФ из АДФ и фосфата в процессе окислительного фосфорилирования. Если весь имеющийся в клетке запас фосфата и (или) АДФ уже исчерпан, то окисление приостанавливается и может возобновиться лишь после того, как этот запас вновь станет достаточным. Таким образом, окисление, смысл которого в том, чтобы поставлять полезную энергию в форме АТФ, происходит только тогда, когда возможен синтез АТФ.

3. В биосинтетических процессах участвует сравнительно небольшое число строительных блоков, каждый из которых используется для синтеза многих соединений. Среди них можно назвать ацетилкофермент А, глицерофосфат, глицин, карбамилфосфат, поставляющий карбамильную (H2N–CO–) группу, производные фолиевой кислоты, служащие источником гидроксиметильной и формильной групп, S-аденозилметионин – источник метильных групп, глутаминовую и аспарагиновую кислоты, поставляющие аминогруппы, и наконец, глутамин – источник амидных групп. Из этого относительно небольшого числа компонентов строятся все те разнообразные соединения, которые мы находим в живых организмах.

4. Простые органические соединения редко участвуют в метаболических реакциях непосредственно. Обычно они должны быть сначала «активированы» путем присоединения к одному из ряда соединений, универсально используемых в метаболизме. Глюкоза, например, может подвергнуться окислению лишь после того, как она будет этерифицирована фосфорной кислотой, для прочих же своих превращений она должна быть этерифицирована уридиндифосфатом. Жирные кислоты не могут быть вовлечены в метаболические превращения прежде, чем они образуют эфиры с коферментом А. Каждый из этих активаторов либо родствен одному из нуклеотидов, входящих в состав рибонуклеиновой кислоты, либо образуется из какого-нибудь витамина. Легко понять в связи с этим, почему витамины требуются в таких небольших количествах. Они расходуются на образование «коферментов», а каждая молекула кофермента на протяжении жизни организма используется многократно, в отличие от основных питательных веществ (например, глюкозы), каждая молекула которых используется только один раз.

В заключение следует сказать, что термин «метаболизм», означавший ранее нечто не более сложное, чем просто использование углеводов и жиров в организме, теперь применяется для обозначения тысяч ферментативных реакций, вся совокупность которых может быть представлена как огромная сеть метаболических путей, многократно пересекающихся (из-за наличия общих промежуточных продуктов) и управляемых очень тонкими регуляторными механизмами.

Многие люди не задумываются над тем, насколько сложен наш организм. Среди разнообразных процессов, протекающих в теле человека, нельзя забывать о том, что такое метаболизм, ведь благодаря ему живые существа, в том числе и человек, могут поддерживать свои жизненные функции - дыхание, размножение и другие. Нередко от метаболизма зависят общее самочувствие и вес человека.

Что такое метаболизм в организме человека?

Чтобы понять, что такое метаболизм в организме, нужно разобраться в его сути. Метаболизм – научный термин, обозначающий . Это совокупность химических процессов, благодаря которым потребляемая пища превращается в тот объем энергии, который необходим живому существу для поддержания жизненных функций. Данный процесс происходит при участии специальных ферментов, способствующих перевариванию и усвоению жиров, углеводов и белков. Для человека он играет важнейшую роль, потому что участвует в процессах роста, дыхания, размножения, регенерации тканей.


Метаболизм и катаболизм

Зачастую, чтобы сохранить здоровье и не беспокоиться о проблеме , важно в процессе жизнедеятельности соблюдать баланс между потребляемой и затраченной энергией. С научной точки зрения это объясняется тем, что метаболические процессы состоят их двух этапов:

  1. Анаболизм , во время которого происходит синтез веществ в более сложные структуры, что требует определенных энергетических затрат.
  2. Катаболизм , при котором, наоборот, происходит распад сложных веществ до простых элементов и выделяется необходимая энергия.

При этом два вышеупомянутых процесса находятся в неразрывной связи друг с другом. Во время катаболизма выделяется энергия, которая впоследствии может быть направлена на функционирование анаболических процессов, что приведет к синтезу необходимых веществ и элементов. На основе написанного можно сделать вывод, что одно рассматриваемое понятия вытекает из второго.

Нарушение метаболизма - симптомы

Часто ускоренный, или, наоборот, замедленный метаболизм, может быть причиной некоторых изменений в работе организма. Чтобы не допустить подобной ситуации, важно вести , отказаться от вредных привычек и прислушаться к собственному организму. Медленный или быстрый метаболизм может проявляться в виде следующих симптомов:

  • появление ломкости волос и ногтей, разрушение зубов, проблемы с кожей;
  • нарушение работы желудочно-кишечного тракта, запоры, жидкий стул;
  • резкое увеличение или снижение веса;
  • у женщин ;
  • бесконтрольное чувство жажды или голода.

Подобные признаки, помимо изменения метаболических процессов, могут свидетельствовать о серьезных проблемах со здоровьем. Поэтому важно вовремя обратиться за консультацией к врачу. Возможно, могут потребоваться дополнительное обследование и сдача анализов для выявления точного диагноза и постановки верного лечения.

Типы метаболизма

Мало знать, что такое процессы метаболизма, важно разбираться в его типах:

  1. Белковый тип характеризуется ярко выраженной парасимпатической нервной системой, а также быстрым окислением. Человек с подобным метаболизмом часто голоден, не приветствует строгие диеты, постоянно испытывает чувство голода, может быть нервным и вспыльчивым. Невзирая на внешнюю энергичность, он уставший, или даже изможденный. В подобных случаях может быть рекомендована белковая диета, но полностью исключать углеводы не всегда целесообразно, потому что они являются источником глюкозы;
  2. Углеводный тип метаболизма, наоборот, характеризуется симпатической нервной системой и медленным окислением. В таких случаях люди не зависят от употребления сладкого, отличаются слабым аппетитом и любят кофе. Часто они отличаются А-образным типом фигуры. Как правило, в таких случаях назначается , но при условии контроля со стороны врача. Это связано с тем, что подобная пища может способствовать набору веса и негативно сказываться на здоровье человека;
  3. Смешанный тип отличается признаками первого и второго типа, но с менее выраженными характеристиками. Люди часто бывают усталыми, могут испытывать чувство тревоги. Они любят сладкое, но при этом не всегда сталкиваются с проблемой лишнего веса.

Как разогнать метаболизм?

Бытует мнение, что чем быстрее обмен веществ, тем меньше проблем возникает с массой тела. Как ускорить метаболизм для похудения? Существует ряд методов – различные диеты, травяные настои, витаминные комплексы и лечебные препараты, но не всегда они надежны, так как вес человека зависит не только от метаболизма. Не стоит забывать об особенностях организма и физической активности. Важно помнить, что ускоренный метаболизм может быть симптомом проблем со здоровьем.

Продукты, ускоряющие метаболизм

Задумываясь над тем, как повысить метаболизм, многие люди для своего рациона выбирают определенные продукты. Иногда рекомендуют принимать пищу небольшими порциями несколько раз в день и не забывать об употреблении воды. Часто подобное меню включает:

  • цельнозерновые продукты;
  • постное мясо;
  • молочные продукты;
  • яблоки и цитрусовые фрукты;
  • рыба;
  • зеленый чай и кофе.

Напитки для ускорения метаболизма

Иногда ускорение метаболизма может вызвать употребление некоторых напитков. Помимо жидкой диеты нельзя забывать о полноценном питании и умеренных физических нагрузках. В качестве напитков рекумендуется принимать:

  • воду - после сна способствует улучшению обмена веществ;
  • зеленый чай - за счет содержания в нем кахетина запускается процесс жиросжигания;
  • молоко - благодаря входящему в состав кальцию стимулируется метаболизм;
  • кофе - кофеин подавляет чувство голода и замедляет метаболистический процесс.

Витамины для метаболизма и жиросжигания

Вопрос, как ускорить метаболизм в организме, лучше задавать врачу. Это связано с тем, что любое постороннее вмешательство может негативно сказаться на организме человека. После обследования и постановки точного диагноза в качестве лечения может быть назначена диета и прием дополнительных витаминов, таких, например, как:

  • рыбий жир - снижает уровень холестерина в крови, тем самым восстанавливая метаболизм;
  • фолиевая кислота - способствует укреплению иммунной системы, вследствие чего нормализуется метаболистический процесс;
  • витамины группы В, С, D, A - приводят к ускорению обмена веществ на 10%, за счет нормализации уровня инсулина.

Препараты, улучшающие метаболизм

Иногда, при появлении мыслей о том, как улучшить метаболизм и похудеть, возникает желание использования всевозможных препаратов. Большую популярность среди них приобрели БАДы из серий "Турбослим" и "Лида", которые имеют ряд противопоказаний:

  • индивидуальная непереносимость компонентов, входящих в состав средства;
  • период беременности и лактации;
  • заболевания сердечно-сосудистой системы;

Любые препараты стоит принимать только после консультации врача и уточнения диагноза. Бесконтрольный прием таких средств может негативно отразиться на здоровье пациента, и разгон метаболизма останется малозначимой проблемой. В качестве назначений иногда используются стимуляторы, анаболики и другие сильные лекарства, поэтому важно учитывать наличие противопоказаний и побочных эффектов:

  • сухость в ротовой полости;
  • нарушение сна;
  • рвотные позывы;
  • аллергическая реакция;
  • тахикардия;
  • нарушение работы желудочно-кишечного тракта.

Травы для ускорения метаболизма

В качестве способа изменения скорости метаболических процессов иногда используют всевозможные травяные настои и отвары. При этом важно учитывать отсутствие аллергии, проблем со здоровьем и других особенностей организма, говорящих о том, что перед употреблением травяных настоев лучше проконсультироваться с врачом. Травы ускоряющие метаболизм, могут быть следующими:

  • китайский лимонник;
  • женьшень;
  • эхинацея пурпурная;
  • шиповник;
  • череда;
  • листья черной смородины или земляники.

Упражнения для ускорения метаболизма

Помимо правильного питания и витаминных комплексов для ускорения обмена веществ иногда рекомендуют спортивные упражнения. Как улучшить метаболизм с помощью физических нагрузок? Полезными будут:

  1. Ходьба с умеренным темпом и прогулки на свежем воздухе – они не требуют специальной подготовки и посещения спортзала.
  2. Еще одним упражнением могут быть приседания, которые можно выполнять в домашних условиях.
  3. Иногда рекомендуют отжимания от пола, бег на месте, качание мышц живота. Популярными становятся интервальные тренировки, при которых физические нагрузки чередуются с отдыхом при выполнении одной группы упражнений.

Как замедлить метаболизм и набрать вес?

Задумываясь над тем, как замедлить метаболизм, важно помнить, что подобные действия не всегда будут полезны для здоровья человека, даже если это необходимо при наборе веса. Существует несколько рекомендаций, выполнений которых может дать возможность некоторого уменьшения скорости метаболических процессов, но отсутствие медицинского контроля при их выполнении может вызвать негативные последствия:

  • длительный сон, потому что во время сновидения замедляются многие процессы в организме, в том числе и метаболизм;
  • потребление меньшего количества калорий, что даст организму сигнал к накапливанию энергии;
  • пропуск некоторых приемов пищи;
  • употребление большого количества сложных углеводов – злаковых культур, бобовых;
  • отказ от кофе, зеленого чая.

Видно, что эти рекомендации в основном противоречат принципам правильного полноценного питания, поэтому они могут быть применимы в самых крайних случаях по рекомендации врача. Не стоит забывать о наследственных факторах, которые могут сказаться на результате желанного набора веса после снижения темпов обмена веществ.

Любому человеку полезно будет знать, что такое метаболизм, или обмен веществ, каковы его особенности и от чего он зависит. С ним напрямую связаны жизненно важные процессы организма, поэтому, наблюдая у себя какие-либо признаки нарушения обмена веществ, важно не предпринимать самостоятельных действий без консультации врача.

Слово «метаболизм» употребляют в речи диетологи и спортсмены, фитнес-инструкторы и вечно худеющие.

Чаще всего термин употребляется в значении «обмен веществ». Но что это такое на самом деле, знают далеко не все. Попробуем разобраться.

Что это такое?

Метаболизм – это процессы, проходящие в любом живом организме для поддержания его жизни. Метаболизм позволяет телу расти, размножаться, заживлять повреждения и реагировать на окружающую среду.

Для этого действительно необходим постоянный обмен веществ . Разделить процессы можно на два потока. Один разрушительный – катаболизм, другой созидательный – анаболизм.

Разборка на молекулярном уровне…

Любое питательное вещество, попадающее в организм, не может сразу пойти на его нужды. Например, белки из орехов, молока и человеческих мышц – совершенно разные, и друг друга заменить не могут.

Однако они состоят из одних и тех же «кирпичиков» — аминокислот . Хотя в каждом из белков их разный набор и соотношение.

Чтобы получить стройматериал для, например, бицепса, специальные ферменты разбирают содержащийся в молоке или котлете белок на отдельные аминокислоты , которые уже и идут в дело.

Параллельно высвобождается энергия, измеряемая в калориях. Процесс разбора и есть катаболизм . Другой пример катаболизма – расщепление обычного сахара-рафинада на фруктозу и глюкозу.

… и сборочный цех

Организму недостаточно разобрать белки из съеденного на аминокислоты. Из них необходимо собрать новые белки для той же мышцы бицепса.

Постройка сложных молекул из более мелких компонентов требует энергозатрат. На нее идут те самые калории, которые организм получил при «разборке». Этот процесс называется анаболизм .

Еще пара наглядных примеров работы «сборочного цеха» организма – рост ногтей и заживление трещин в костях.

А откуда берется жир?

Если в процессе расщепления питательных веществ производится энергии больше, чем ее требуется на постройку новых клеток организма, появляется явный избыток , который надо куда-то деть.

Когда организм находится в состоянии покоя, метаболизм протекает в «фоновом» режиме и не требует активного расщепления и синтеза веществ. Но как только тело начинает двигаться, все процессы ускоряются и усиливаются. Возрастает и потребность в энергии и питательных веществах.

Но даже у подвижного организма могут оставаться излишки калорий , если их поступает слишком много с пищей.

Небольшая часть полученной и нерастраченной энергии складывается в виде углевода гликогена – источника энергии для активной работы мышц. Он запасается в самих мышцах и печени.

Остальное накапливается в жировых клетках . Причем для их образования и жизни требуется гораздо меньше энергии, чем для постройки мышц или костей.

Как метаболизм связан с массой тела

Можно сказать, что вес тела — это катаболизм минус анаболизм . Другими словами, разница между количеством поступившей в организм энергии и использованной им.

Так, один грамм съеденного жира дает 9 ккал, а то же количества белка или углевода – 4 ккал. Те же 9 ккал организм отложит в 1 грамм жира уже в своем теле, если не сумеет потратить.

Несложный пример : съедаете бутерброд и ложитесь на диван. Из хлеба и колбасы организм получил жиры , белки, углеводы и 140 ккал. При этом лежащее тело потратит полученные калории только на расщепление съеденной пищи и немного на поддержание функций дыхания и кровообращения – около 50 ккал в час. Остальные 90 ккал превратятся в 10 г жира и отложатся в жировое депо.

Если же любитель бутербродов выйдет на спокойную прогулку, полученные калории организм потратит примерно за час.

«Хороший» и «плохой» метаболизм?

Многие с завистью глядят на хрупкую девушку, регулярно лакомящуюся пирожными и не прибавляющую ни грамма веса. Принято считать, что у таких счастливчиков метаболизм хороший, а у тех, для кого кусочек сахара в чае грозит прибавкой веса – метаболизм плохой.

На самом деле результаты исследований показывают, что действительно замедленный метаболизм наблюдается только при ряде заболеваний , например, гипотиреозе – недостатке гормона щитовидной железы. А у большинства людей с лишним весом нет никаких болезней, но наблюдается энергетический дисбаланс.

То есть, энергии в организм поступает гораздо больше, чем ее нужно на самом деле, и она складируется про запас.

Статьи расхода калорий

Чтобы расход и получение калорий держать под контролем, стоит помнить основные направления дополнительных энергозатрат.

1. Чем выше масса тела , тем больше калорий ему требуется. Но, как мы знаем, жировой ткани надо совсем мало энергии для жизни, а вот мышечная потребляет достаточно.

Поэтому 100-килограммовый культурист потратит больше калорий на ту же работу, что и его 100-килограммовый ровесник с неразвитыми мышцами и высоким процентом жира.

2. Чем старше становится человек , тем выше у него разница между поступлением энергии и ее тратами за счет гормонального дисбаланса и резкого снижения физической активности.

3. В метаболизме мужского организма активно участвует гормон тестостерон. Это настоящий естественный анаболик, заставляющий организм тратить энергию и ресурсы на выращивание дополнительных мышц. Именно поэтому мышечная масса у мужчин обычно гораздо выше, чем у женщин.

А поскольку на поддержание жизнедеятельности мышц требуется гораздо больше энергии, чем для сохранения жира, то мужчина и женщина одного роста и веса тратят неодинаковое количество калорий на одни и те же действия.

Проще говоря: мужчины больше тратят энергии, им требуется больше еды, а при желании они гораздо быстрее худеют.

Что надо знать о метаболизме

Вся жизнь организма – это баланс между расщеплением питательных веществ и получением из них энергии и энергозатратах при создании новых молекул и клеток.

Если энергии поступает слишком много – она откладывается про запас в виде жировой ткани. Увеличить энергозатраты можно, много двигаясь или вырастив достаточное количество мышечной массы.

Текст: Ольга Лукинская

СЛОВО «МЕТАБОЛИЗМ» ЧАСТО УПОТРЕБЛЯЮТ К МЕСТУ И НЕ К МЕСТУ, но не все до конца понимают, что такое обмен веществ и по каким законам он функционирует. Чтобы в этом разобраться, мы спросили спортивного диетолога, члена Международной ассоциации спортивных наук (ISSA) Леонида Остапенко и клинического психолога, основателя Клиники расстройств пищевого поведения Анну Назаренко, что нужно знать о метаболизме, и как не навредить своему телу в попытках его изменить.

Что такое метаболизм

Метаболизм, или обмен веществ, объединяет все химические реакции в организме. Они происходят непрерывно и включают катаболизм - разрушение белков, жиров и углеводов для получения энергии и «строительных материалов» - и анаболизм, то есть создание клеток или синтез гормонов и ферментов. Наша кожа, ногти и волосы и все остальные ткани регулярно обновляются: для их построения и восстановления после травм (например, для заживления ран) нужны «кирпичики» - в первую очередь белки и жиры - и «рабочая сила» - энергия. Всё это и называется обменом веществ.

Под метаболизмом подразумевают оборот энергии, необходимой для подобных процессов. Её затраты при основном обмене - это калории, которые уходят на поддержание температуры тела, работу сердца, почек, лёгких, нервной системы. К слову, при основном обмене в 1 300 килокалорий 220 из них приходится на работу мозга . Метаболизм можно разделить на основной (или базальный), который происходит постоянно, в том числе во сне, и дополнительный, связанный с любой активностью, отличной от покоя. Обмен веществ есть у всех живых организмов, включая растения: считается, что самый быстрый метаболизм у колибри, а самый медленный - у ленивца.

Что влияет на скорость обмена веществ

Мы часто слышим выражения «медленный метаболизм» или «быстрый метаболизм»: зачастую имеют в виду возможность сохранять стройность без ограничений в еде и физических нагрузок или, наоборот, склонность легко набирать вес. Но скорость обмена веществ отражается не только на внешности. У людей с быстрым метаболизмом на жизненно важные функции, например работу сердца и мозга, за одно и то же время тратится больше энергии, чем у обладателей медленного обмена веществ. При равных нагрузках один человек может завтракать и обедать круассанами, мгновенно сжигая все полученные калории, а другой будет стремительно набирать вес - это значит, что у них разная скорость базального обмена. Он зависит от множества факторов, на многие из которых нельзя повлиять.

Факторы метаболизма, которые не поддаются коррекции, называют статическими: это наследственность, пол, тип телосложения, возраст. Однако есть условия, на которые можно повлиять. К таким динамическим параметрам относятся масса тела, психоэмоциональное состояние, организация рациона, уровень выработки гормонов, физические нагрузки. От взаимодействия всего перечисленного и зависит скорость обмена. Если правильно корректировать факторы второй группы, можно в некоторой степени ускорить или замедлить метаболизм. Результат будет зависеть от особенностей генетики и устойчивости всей системы обмена.